期刊文献+

LLE算法及其应用 被引量:8

Arithmetic of Locally Linear Embedding and Its Application
下载PDF
导出
摘要 LLE算法针对非线性降维问题,利用线性重构的局部对称性找出高维数据空间中的非线性结构。并在保持各数据点临近位置关系情况下,把高维空间数据点映射为低维空间对应的数据点。其计算步骤包括:计算、寻找数据点或邻居数据点、构造数据点及计算权值矩阵,并通过权值矩阵计算低维向量。 Aiming at the problem of nonlinear dimensionality reduction, local linear embedding (LLE) algorithm was presented. The nonlinear structure in high dimensional data space was exploited with the local symmetries of linear reconstructions. The data points in high dimensional space were mapped into corresponding data points in lower dimensional space under preserving distance between data points. The process of LLE algorithm includes calculating, searching data points or border upon data points, creating data points and calculating right value matrix, and the lower dimensional vectors computed through right value matrix.
作者 邓星亮 吴清
出处 《兵工自动化》 2005年第3期65-66,共2页 Ordnance Industry Automation
关键词 LLE算法 高维数据 低维空间 非线性降维 数据点映射 LLE algorithm High dimensional data Lower dimensional space Nonlinear dimensionality reduction Mapping of data points
  • 相关文献

参考文献7

  • 1I T Jolliffe. Principal Component Analysis [M]. Springer-Verlag, New York, 1989.
  • 2T Cox, M Cox. Multidimensional Scaling [M]. Chapman & Hall, London, 1994.
  • 3S T Roweis, L K Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding [J]. Science, 2000, (290):2323-2326.
  • 4D DeMers, G W Cottrell. Nonlinear Dimensionality Reduction [A]. In Advances in Neural Information Processing Systems 5 [C], D Hanson, J Cowan, L Giles, Eds. Morgan Kaufmann, San Mateo, CA, 1993. 580-587.
  • 5M Kramer. Nonlinear Principal Component Analysis Using Autoassociative Neural Networks [J]. AIChE Journal, 1991, (37):233-243.
  • 6T Kohonen. Self-Organization and Associative Memory [M]. Springer-Verlag, Berlin, 1988.
  • 7C Bishop, M Svensen, CWilliams. GTM:The Generative Topographic Mapping [J]. Neural Computation, 1998, (10):215-234.

同被引文献86

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部