期刊文献+

基于时间进化反传学习算法的控制器设计

Design of Controller Based on BPTT Learning Algorithm
下载PDF
导出
摘要 时间进化反传算法(BPTT)引入离散时间变量,把网络各个时刻的处理发展成前向网络。其计算的导数能用于模式识别及随机、确定控制。基于BPTT的控制器仿真用一单层网络作为仿真器模拟系统的运动学特性,用BPTT算法按时间展开仿真器模型,再运用BP算法进行训练,以求解动态系统诸问题。 A discrete time variable was introduced in the back-propagation through time (BPTT) learning algorithms. This recurrent network is processed into a feed-forward network by unfolding the network at the time steps. The derivatives of calculation for BPTT are used in pattern recognition, stochastic and deterministic control. For BPTT-based controller simulation, a layer network is adopted as the emulator, and the kinematics characteristic of a simulating system is simulated by it. The simulative model was unfolded with BPTT algorithm according to the time steps. As the same time, BPTT was trained with BP algorithm to solve the problem of identifying a dynamic system and so on.
出处 《兵工自动化》 2005年第3期74-74,81,共2页 Ordnance Industry Automation
基金 海南省自然科学基金资助(Hjkj200327)
关键词 BP算法 BPTT算法 仿真 Algorithm for back-propagation Algorithm for back-propagation through time Simulation
  • 相关文献

参考文献2

  • 1Williams R J, et al. An Efficient Gradient-Based Algorithm for on Line Training of Recurrent Network Trajectories [A]. Neural Computer [C], 1990. 490-504.
  • 2Ngeyen D H, NN for Self-Learning Control Systems [J]. IEEE Control Systems Magazine, 1990:18-23.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部