期刊文献+

求解车间调度问题的一种新遗传退火混合策略 被引量:21

New genetic annealing hybrid strategy for job-shop scheduling problem
下载PDF
导出
摘要 综合了遗传算法和模拟退火算法的优点,提出了一种新的遗传退火混合优化策略。该算法引入模拟退火算法作为遗传算法种群的变异算子,增强和补充了遗传算法的进化能力,同时将机器学习原理引入混合算法中,增加了种群的平均适值,有效地避免了最优解的丢失,加快了进化速度,使系统能够在很短的时间内得到最优解。针对车间调度的典型问题进行了仿真,结果证明了新算法的有效性。 Combining advantages of Genetic Algorithm (GA) with Simulated Annealing (SA)algorithm, a new genetic annealing hybrid strategy, Modified Genetic Algorithm and Simulated Annealing(MGASA), was proposed. SA was regarded as the variation operator of GA population, which improved the local search ability and evolution. At the same time, the theory of machine-learning was introduced to MGASA, and so the average fitness of chromosomes was improved, the loss of the best solution was prevented and the speed of the evolution was increased. Then, the best solution could be obtained earlier. The simulation results of classic job-shop scheduling problems indicated the effectiveness of MGASA.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2005年第6期851-854,共4页 Computer Integrated Manufacturing Systems
基金 辽宁省教育厅资助项目(2004D113)。~~
关键词 机器学习 遗传算法 模拟退火算法 混合策略 machine-learning genetic algorithm simulated annealing algorithm hybrid strategy
  • 相关文献

参考文献6

  • 1HOLLAND J H. Genetic algorithm[J]. Scientific American,1992,266(4) :44-50
  • 2康立山 谢云 等.非数值并行算法-模拟退火算法[M].科学出版社,1998..
  • 3GOLDBERG D E. A note on boltzmann tournament selection for genetic algorithms and population oriented simulated annealing[J]. Complex System, 1990,4(4): 445 -460.
  • 4FARMER J D, PACKARE N K. The immune system, adaptation, and machine learning[J]. Physica, 1986, 22(2): 187-204.
  • 5MUTH J F, THOMPSON G L. Industrial scheduling[M].NJ, USA: Prentice-Hall, Englewood Cliffs, 1963.
  • 6DAVIDOR Y, YAMADA T, NAKANO R. The ecological ramework Ⅱ: improving GA performance at virtually zero cost[A]. 5th ICGA[C]. Tokyo, Japan:Institute of Electrical Engineers, 1993. 171-176.

共引文献7

同被引文献155

引证文献21

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部