期刊文献+

二维三角晶格上Gauss自旋模型的临界温度 被引量:1

Critical Temperature of the Gaussian Model on a Triangular Lattice
下载PDF
导出
摘要 利用傅立叶变换的方法,精确求解了二维三角晶格上的Gauss自旋模型,得到了系统的临界点(温度).结果表明:与简单二维和三维晶格上的结果相比较,此晶格的临界点除了与空间维数有关外,还与晶格格点的配位数有关. Using the Fourier transformation method, the Gaussian Model on a two-dimensional triangular lattice is studied exactly. The critical point (temperature) of the system is obtained. The result shows that, comparing with the result of simple two and three-dimensional lattices, the critical point of the system depends not only on the spatial dimension but also on the coordination number of the sites of the lattice.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2005年第3期63-65,共3页 Journal of Qufu Normal University(Natural Science)
基金 曲阜师范大学科研基金资助.
关键词 三角晶格 GAUSS模型 临界温度 Triangular lattice Gaussian model critical temperature
  • 相关文献

参考文献3

二级参考文献12

  • 1Stanley H E.重整化群与渗流理论[J].物理学进展,1985,5(1):1-65.
  • 2Gefen Y et al 1984 Physica A 17 435
  • 3Wang Z D and Gong C D 1990 Prog.Phys.10 1(in Chinese)[汪子丹、龚昌德1990物理学进展10 1]
  • 4Li S and Yang Z R 1997 Phys.Rev.E.55 6656
  • 5Kong X M and Li S 2000 Commun.Theor.Phys.33 63
  • 6Kong X M,Lin Z Q and Zhu J Y 2000 Sci.China A 43 768
  • 7Berlin T H and Kac M 1952 Phys.Rev.86 821
  • 8Niemeijer T H and Van Leeuwen J M J 1973 Phys.Rev.Lett.311411
  • 9Stanley.H E 1985 Prog.Phys.5 1(in Chinese)[ Stanley H E 1985物理学进展5 1]
  • 10孔祥木,李崧.钻石型等级晶格上Gauss模型的临界性质[J].中国科学(A辑),1998,28(12):1129-1134. 被引量:4

共引文献17

同被引文献19

  • 1王春阳,孔祥木.长程作用下Gauss系统的临界温度[J].物理学报,2005,54(9):4365-4369. 被引量:4
  • 2Heider A F. Attitudes and cognitive organization[J]. The Journal of Psy-chology, 1946, 21(1): 107-112.
  • 3Cartwright D, Harary F. Structural balance: A generalization of heider's theory[J]. Psychological Review, 1956, 63(5): 277-293.
  • 4Leik R K, Meeker B F. Mathematical sociology[M]. New Jersey: Prentice-Hall, 1975.
  • 5Bonacich P, Lu P. Introduction to mathematical sociology[M]. New Jersey: Princeton University Press, 2012.
  • 6Hummon N P, Fararo T J. The emergence of computational sociology[J]. Journal of Mathematical Sociology 1995, 23(2-3): 79-87.
  • 7Hummon N P, Doreian P. Some dynamics of social balance processes: bringing Heider back into balance theory[J]. Social Networks, 2003, 25 (1): 17-49.
  • 8Antal T, Krapivsky P L, Redner S. Dynamics of social balance on networks[J]. Physical Review E, 2005, 72(3): 036121.
  • 9Radicchi F, Vilone D, Meyer-Ortmanns H. Universality class of triad dy-namics on a triangular lattice[J]. Physical Review E, 2007, 75(2): 021118.
  • 10Radicchi F, Vilone D, Yoon S, et al. Social balance as a satisfiability prob-lem of computer science[J]. Physical Review E, 2007, 75(2): 026106.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部