期刊文献+

H-矩阵的刻化及一类实矩阵逆的上下界估计 被引量:2

A characterization of an H-matrix and the bounds estimation for the inverse of a class real matrix
原文传递
导出
摘要 H-矩阵是一类有很强应用背景的矩阵,首先利用矩阵的分裂刻划了H-矩阵;然后给出了更精确的H-矩阵逆的上下界估计;进而把该结论推广到一类实矩阵.所用方法不同于以往有关结论,并改进了最近的相关结果. <Abstrcat>H-matrix is a class of widely used matrix.It is first presented that a characterization of an H-matrix by the splitting of matrix;then a more accurate bounds estimation for the inverse of an H-matrix is presented;finally the conclusions to a class of real matrix is extended.The method used in this paper is different from the others.Some recent results are imprived.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第4期285-288,共4页 Journal of Yunnan University(Natural Sciences Edition)
基金 全国教育科学"十五"规划课题基金资助(FCB030794) 广东高校自然科学基金资助项目基金资助(Z03095).
关键词 H-矩阵 M-矩阵 M-分裂 谱半径 H-matrix M-matrix M-splitting spectral radius
  • 相关文献

参考文献4

  • 1OSTROWSKY A M. Uber die determinanten mit uberwiegender hauptdiagonale[J ]. Comment Math Helv, 1937, 10:69-96.
  • 2MEUMAIER A. On the comparison of H- matrices[J]. Linear Algebra Appl, 1986, 83:135-141.
  • 3BERMAN A, PLEMMONS R J. Nonnegative matrices in the mathematical science[M]. New York:Academic, 1979.
  • 4孙丽英.改进的Gauss-Seidel迭代法对H-矩阵的收敛性定理(英文)[J].云南大学学报(自然科学版),2005,27(2):97-99. 被引量:2

二级参考文献3

  • 1KOHNO T, KOTAKEMORI H, NIKI H, et al. Improving the modified Gauss-Seidd method for Z-Matrices[J]. Linear Algebra Appl, 1997, 267:113-123.
  • 2KOLOTILINA T. Two-sided bounds for the inverse of an H-matrix[J]. Linear Algebra Appl, 1995, 225:117-123.
  • 3BERMAN A, PLEMMONS R J. Nonnegative matrices in the mathematics sciences[M]. Philadelphia: SIAM Press, 1994.

共引文献1

同被引文献15

  • 1黄廷祝.非奇H矩阵的简捷判据[J].计算数学,1993,15(3):318-328. 被引量:198
  • 2黄荣,刘建州.非奇H-矩阵的实用性新判定[J].高校应用数学学报(A辑),2007,22(1):111-119. 被引量:9
  • 3杨亚强,于建伟.一个不可约矩阵为非奇异H矩阵的判定条件[J].宝鸡文理学院学报(自然科学版),2007,27(1):36-38. 被引量:2
  • 4逄明贤.广义对角占优矩阵的判定及应用[J].数学年刊:A辑,1985,6:323-330.
  • 5HORN R A,JOHNSON C R. Topics in matrix analysis [ M ]. New York:Cambridge University Press, 1991.
  • 6BERMAN A, PLEMONS R J. Nonnegative matrices in the mathematical sciences[ M ]. New York:Academic Press, 1979.
  • 7HORN R A,JOHNSON C R. Topics in matrix analysis[ M]. New York:Cambridge University Press, 1985.
  • 8FANG M Z. Bounds on eigenvalue of the Hadamard product and the Fan product of matrices[J]. Linear Algebra Appl,2007,425:7-15.
  • 9HUANG R. Some inequalities for the Hadamard product and Fan product of matrices [ J ]. Linear Algebra Appl,2008,428: 1 551-1 559.
  • 10LIU Q B,CHEN G L. On two inequalities for the Hadamard product and Fan product of matrices [ J ]. Linear Algebra Appl, 2009.03. 049. doi : 10. 1016/j. laa.

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部