期刊文献+

关于三角形数补数及其渐近性质 被引量:20

On the triangle Number's Complement and its Asymptotic Properties
下载PDF
导出
摘要 对任意正整数n,设a(n)表示n的三角形数补数,即就是a(n)是最小的非负整数使得n+a(n)为一三角形数m(m+1)2.用初等和解析的方法研究了三角形数补数列狖a(n)狚(n=1,2,3,···)的渐近性质,给出了两种不同类型的渐近公式. For any positive integer n,let a(n)denotes the triangle number's complement.That is,for any fixed positive integer n,a(n) is the smallest nonnegative integer number such that n+a(n) be a triangel number ■.Using the elementary and analytic methods,it is to study the asymptotic properties of the triangle number complement sequence,and two interesting asymptotic formulas for it are obtained.
作者 易媛
出处 《商洛师范专科学校学报》 2005年第2期3-5,共3页 Journal of Shangluo Teachers College
基金 国家自然科学基金项目(10271096) 西安交通大学在职博士基金项目
关键词 三角形数 补数 序列 渐近公式 triangle number complement sequence asymptotic formula.
  • 相关文献

参考文献7

  • 1Smarandache F.Only Problems,not Solutions. Chicago:Xiquan Publ. House,1993.
  • 2Zhu Weiyi. On the k-power complement and k-power free number sequence. Smaran-dache Notions Journal,2004,14:66-69.
  • 3Yao Weili.On the k-power complement sequence.Research on Smarandache Problems in Number Theory.2004,Hexis,43-46.
  • 4Liu Hongyan and Lou Yuanbing. A note on the 29-th Smarandache's problem. Smaran-dache Notions Journal,2004,14:156-158.
  • 5Xu Zhefeng. On the additive k-power complements. Research on Smarandache Problems in NUmber Theory.2004,Hexis,13-16.
  • 6Tom M.Apostol. Introduction to Analytic Number Theory. Springer-Verlag:New York, 1976.
  • 7Pan Chengdong and Pan Chengbiao.The esementary number theory.Beijing University Press:Beijing.2003.

同被引文献60

引证文献20

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部