期刊文献+

多传感器信息融合平滑器算法研究 被引量:1

The Research on Multi-Sensor Information Fusion Smoother Algorithm
下载PDF
导出
摘要 为了提高融合估计的精度,采用矩阵加权线性最小方差意义下的最优信息融合准则,对多传感器系统,考虑局部估计误差之间的相关性,给出了最优信息融合固定区间平滑器算法。理论和仿真实验表明,融合平滑器精度在总体上高于各局部子系统的估计精度。与融合预报器相比,融合平滑估计比预测平滑估计精度提高了近5倍,显著地改善了传感器的融合估计精度,并且该平滑器具有容错性。因此,本文提出的融合平滑器算法,对于非实时的信息融合问题具有一定的应用价值。 In order to improve the precision of the fusion estimation, this paper presents the optimal information fusion fix-interval smoother based on the multi-sensor optimal information fusion criterion weighted by matrix in the linear minimum variance sense. The algorithm considers the correlation of estimation errors among local subsystems. The theory and simulation show that the precision of the fusion smoother is higher than that of each local subsystem in general. The algorithm can improve the precision of fusion estimation evidently in contrast of the fusion predictor, and the algorithm has the fault-tolerant. Since that, the algorithm presented in this paper has an applying value for non-real-time information fusion problem.
出处 《青岛大学学报(工程技术版)》 CAS 2005年第2期80-83,共4页 Journal of Qingdao University(Engineering & Technology Edition)
关键词 信息融合 矩阵加权 固定区间平滑器 线性最小方差 information fusion weighted by matrix fix-interval smoother linear minimum variance
  • 相关文献

参考文献5

  • 1Hong-zhuan Qiu, Hong-yue Zhang, Hong Jin. Fusion Algorithm of Correlated Local Estimates[J]. Aerospace Science and Technology, 2004(8): 619 - 626.
  • 2Shu-li Sun. Muti-sensor Optimal Information Fusion Kalman Filters with Applications[J]. Aerospace Science and Technology, 2004(8): 57 - 62.
  • 3郭尚来.随机控制[M].北京:清华大学出版社,1997.140-147.
  • 4Bar-shalom Y. On the Track-to-Track Correlation Problem[J]. IEEE Trans on Automatic Control, 1981, 26(2): 571 -572.
  • 5孙书利,史雪岩,崔平远.多传感器最优信息融合Kalman多步预报器及其应用[J].宇航学报,2004,25(2):241-246. 被引量:25

二级参考文献6

  • 1邓自立 祁荣宾.多传感器信息融合次优稳态Kalman滤波器[J].中国学术期刊文摘(科技快报),2000,6(2):183-184.
  • 2Carlson N A.Federated Square Root Filter for Decentralized Parallel Processes[J].IEEE Trans.on Aerospace and Electronic Systems,1990,AES-26 (3):517-525
  • 3Carlson N A.Federated Kalman filter simulation results[J].Navigation,1994,41(3):297-321
  • 4Bar-Shalom,Y.On the track-to-track correlation problem[J].IEEE Trans.on Automatic Control,1981,AC-26(2):571-572
  • 5Hashmipour H R,Roy S,Laub A J.Decentralized structures for parallel Kalman Filtering[J].IEEE Trans.on Automatic Control,1988,33 (1),88-93
  • 6孙书利,崔平远.两传感器最优信息融合Kalman滤波器及其在跟踪系统中的应用[J].宇航学报,2003,24(2):206-209. 被引量:14

共引文献26

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部