期刊文献+

一种基于神经网络和决策树相结合的数据分类新方法 被引量:4

A New Data Classifying Method Based on Combination of Neural Network and Decision Tree
原文传递
导出
摘要 提出了一种将神经网络和决策树相结合的数据分类新方法。该方法首先依据属性重要性将属性进行排序,然后通过RBF神经网络进行属性裁减,最后生成决策树,并抽取出规则。与传统的决策树分类方法相比,此方法可依据属性重要性直接生成最小决策树,避免了树的裁减过程,大大加快决策树的生成效率,并进一步提高了规则的预测精度。该方法适用于大规模及高维属性的数据分类问题。 This paper presents a new data classifying method based on combination of neural network and decision tree. The method firstly ranks attributes based on the importance of the attributes, and then prunes the attributes using RBF neural network, and finally builds a decision tree and extracts rules. Compared with the traditional data classifying methods using decision tree, the present method can gain the minimal decision tree directly without pruning, which largely raises the efficiency of building decision tree and improves the prediction precision of rules produced. The method is suitable for large scale and high dimension data classifying problem.
出处 《系统工程理论方法应用》 北大核心 2005年第3期201-205,共5页 Systems Engineering Theory·Methodology·Applications
基金 国家自然科学基金资助项目(60275020)
关键词 决策树 RBF神经网络 输入输出关联法 数据分类 decision tree RBF neural network input output correlation data classifying
  • 相关文献

参考文献16

  • 1Haixun Wang, Yu P S. SSDT: A scalable subspacesp-litting classifier for biased data [A]. ICDM 2001 Proceedings, IEEE International Conference Proceedings [C]. 2001. 542-549.
  • 2Tom M Mitchell, Tom M. Machine learning [M].Asia: McGraw-Hill Education, 2003.42-47.
  • 3Buntine W, Niblett T. A further comparion of splitting rules for decision-tree induction [J]. MachineLearning, 1992,8(1):75-85.
  • 4Kononenko I, Se J H. Attribute selection for modeling [J]. Future Generation Computer Systems,1997, 13(2-3): 181-195.
  • 5Shih Y S. Families of splitting criteria for classification tree [J]. Statistics and Computing, 1999, 9(4) :309-315.
  • 6Schmitz G P J, Aldrich C, Gouws F S. ANN-DT:an algorithm for extraction of decision trees from artificial neural networks[J]. IEEE Trans on NeuralNetworks, 1999, 10(6): 1392-1401.
  • 7Qiangfu Zhao. Evolutionary design of neural network tree-integration of decision tree, neural network and GA[J]. Proceedings of the 2001 Congress on Evolutionary Computation, 2001, 1 : 240- 244.
  • 8Tsujino K. Hybrid knowledge acquisition by integrating decision trees and neural networks [A].IEEE International Conference on Neural Networks,1995, Proceedings[C]. 1995. 3:1379-1383.
  • 9文专,王正欧.一种高效的基于排序的RBF神经网络属性选择方法[J].计算机应用,2003,23(8):34-36. 被引量:8
  • 10Quinlan J R. Induction of decision trees[J]. Machine Learning, 1986, 1(1):81-106.

二级参考文献7

  • 1Engelbrecht AP. A New Pruning Heuristic Based on Variance Analysis of Sensitivity Information[ J]. IEEE Trans. on Neural Networks,2001,12(6) : 1386 - 1399.
  • 2Kwak N, C-h. choi. Input Feature Selection for Classification Problem[J]. IEEE Tran. on Neural Networks, 2002, 13(1) : 143 - 159.
  • 3Xiuju, Lipo Wang. Rule Extraction Based on Data Dimensionality Reduction Using RBF Neural networks[ A]. ICONIP 2001 proceedings, 8th International Conference on Neural Information processing[ C]. Shanghai, China. 2001, vol. 1. 149 - 153.
  • 4Meng Joo Er. Face Recognition With Radial Basis Function(RBF)Neural networks[ J]. IEEE Transaction on Neural Networks, 2002,13(3) : 697 - 709.
  • 5HanJ KamberM.数据挖掘概念与技术[M].北京:机械工业出版社,2001.185.
  • 6李仁璞,王正欧.一种结构自适应的神经网络特征选择方法[J].计算机研究与发展,2002,39(12):1613-1617. 被引量:11
  • 7王兴起,孔繁胜.容忍噪音的特征子集选择算法研究[J].计算机研究与发展,2002,39(12):1637-1644. 被引量:4

共引文献7

同被引文献21

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部