期刊文献+

直接模拟离散颗粒对湍流射流的影响 被引量:2

DIRECT SIMULATION OF THE INFLUENCES ON TURBULENT JET BY DISPERSED PARTICLES
下载PDF
导出
摘要 发展了一种基于双向耦合的直接数值模拟方法,研究了两相湍流射流中离散颗粒对气相射流的影响。流场采用高分辨率的算法直接耦合求解,颗粒相采用拉格朗日方法跟踪。结果表明不同Stokes数的颗粒对射流的影响不同。所有的颗粒都降低了射流速度半宽,但对流向平均速度剖面的影响比较复杂.Stokes数为0.01和50的颗粒降低了横向平均速度,使得湍流强度剖面变的更宽更低;而Stokes数为1的颗粒则增加了横向平均速度,降低了湍流强度。 A direct numerical simulation (DNS) technique based on two-way coupling was developed to study the influences on gas-phase jet by dispersed particles in a two-phase turbulent jet. The coupled high-resolution solver was directly performed for the flow-field and the Lagrangian method was used to trace particles. The results show that particles at different Stokes numbers have different influences on the jet. All particles reduce the jet velocity half-width, but the effects on the streamwise mean velocity profiles are complicated. The particles at Stokes number of 0.01 and 50 decrease the lateral mean velocity, and make the turbulence intensity profiles wider and lower, while the particles at Stokes number of 1 enhance the lateral mean velocity, and decrease the turbulence intensities.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2005年第4期617-620,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金重点资助项目(No.50236030)国家重点基础研究发展计划项目(No.2003CB214500)
关键词 直接数值模拟 气固两相射流 双向耦合 颗粒影响 DNS gas-solid two-phase jet two-way coupling particle effect
  • 相关文献

参考文献15

  • 1Bradbury L J S. The Structure of a Self-Preserving Turbulent Plane Jet. J. Fluid Mech., 1965, 23(1): 31-64
  • 2Gutmark E, Wygnanski I. The Planar Turbulent Jet. J.Fluid Mech., 1976, 73(3): 465-495
  • 3Freund J B, Lele S K, Moin P. Numerical Simulation of a Mach. 1.92 Turbulent Jet and its Sound Field. AIAA J, 2000, 38(11): 2023-2031
  • 4Melville W K, Bray K N C. A Model of the Two-Phase Turbulent Jet. Int. J. Heat Mass Transfer, 1979, 22:647-656
  • 5Chung J N, Troutt T R. Simulation of Particle Dispersion in an Axisymmetric Jet. J. Fluid Mech., 1988, 186:199-222
  • 6罗坤,刘小云,樊建人,岑可法.高雷诺数气固湍流射流的直接数值模拟[J].工程热物理学报,2004,25(3):431-434. 被引量:8
  • 7Elghobashi S. On Predicting Particle-Laden Turbulent Flows. Appl. Sci. Res., 1994, 52:309-329
  • 8Hu F Q. A Stable, Perfectly Matched Layer for Linearized Euler Equations in Unsplit Physical Variables. J. Comput. Phys., 2001, 173:455-480
  • 9Rudy D H, Strikwerda J C. A Nonreflecting Outflow Boundary Condition for Subsonic Navier-Stokes Calculations. J. Comput. Phys., 1980, 36:55-70
  • 10Poinsot T J, Lele S K. Boundary Conditions for Direct Simulations of compressible Viscous Flows. J. Comput.Phys., 1992, 101:104-129

二级参考文献10

  • 1Gutmark E, Wygnanski I. The Planar Turbulent Jet. J.Fluid Mech., 1976, 73(3): 465-495
  • 2Cervantes de Gortari J C, Goldschmidt V W. The apparent Flapping Motion of a Turbulent Plane Jet-Further Experimental Results. J. Fluids Engr., 1981, 103(1):119-126
  • 3Melville W K, Bray K N C. A Model of the Two-Phase Turbulent Jet. Int. J. Heat Mass Transfer, 1979, 22:647-656
  • 4Chung J N, Troutt T R. Simulation of Particle Dispersion in an Axisymmetric Jet. J. Fluid Mech., 1988, 186:199-222
  • 5Thompson K W. Time Dependent Boundary Conditions for Hyperbolic Systems. J. Comput. Phys., 1987, 68:1-24
  • 6Berenger J P. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. J. Comput. Phys., 1994,114:185-200
  • 7Fan J R, Zheng Y Q, Yao J, et al. Direct Simulation of Particle Dispersion in a Three-Dimensional Temporal Mixing Layer. In: Proc. R Soc. Lond A, 2001, 457: 2151-2166
  • 8Wen F, Kamalu N, Chung J N, et al. Particle Dispersion by Vortex Structures in Plane Mixing Layers. J. Fluids Engr., 1992, 114:657-666
  • 9Albertson M L, Dai Y B, Jenson R A, et al. Diffusion of Submerged Jets. Trans. Am. Soc. Civ. Eng., 1950, 115:639-664
  • 10Bradbury L J S. The Structure of a Self-Preserving Turbulent Plane Jet. J. Fluid Mech., 1965, 23(1): 31-64

共引文献7

同被引文献84

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部