期刊文献+

基于概率神经网络的蛋白质亚细胞定位 被引量:2

Protein Subcellular Localization based on Probabilistic Neural Network
下载PDF
导出
摘要 文章通过对氨基酸词频的分析,应用概率神经网络来自动地进行蛋白质亚细胞定位.对于真核生物蛋白质的预测精度达到了82%,对于原核生物的预测精度则达到了92%.而且对于蛋白质序列N端缺失的情况有很好的鲁棒性. There describes a new based on the one rank amino acid frequency analysis of the sequence. This new approach provides better predictions than existing methods. The total prediction accuracies on Reinhardt and Hubbard's dataset reach 92.4% for prokaryotic protein sequences and 82.2 % for eukaryotic protein sequences with 5-fold cross validation. The model shows robust against N-terminal errors in the sequences.
作者 孙豫峰
出处 《太原师范学院学报(自然科学版)》 2005年第2期23-25,34,共4页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 亚细胞定位 氨基酸词频分析 概率神经网络 氨基酸组分 Subcellular localization amino acid frequency model Probabilistic neural network Amino acid composition
  • 相关文献

参考文献6

  • 1[1]Emanuelsson O, Nielsen H, Brunak S,et al. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence[J]. J. Mol. Boil. ,2000,(300):1 005-1 016
  • 2[2]Nakashima H, Nishikawa K. Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies[J]. J. Mol. Boil. , 1994, (238) :54-61
  • 3[3]Reinhardt A,Hubbard T. Using neural networks for prediction of the subcellular location of proteins. Nucl. Acids Res. ,1998,(26):2 230-2 236
  • 4[4]Chou K C,Elord D. Protein subcellular location prediction[J]. Protein Eng. , 1999,(12):107-118
  • 5[5]Chou K C. Prediction of Protein Subcellular Locations by Incorporating Quasi-Sequence-Oder Effect[J]. Biochem. Biophys.Rres. Commun,2001, (278) :477-483
  • 6[6]Yuan Z. Prediction of protein subcellular locations using Markov chain models[J]. FEBS Letters, 1999,(451):23-26

同被引文献15

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部