期刊文献+

基于PSO改进决策树算法的研究 被引量:4

Research on Decision Tree Method Based on Improved PSO
下载PDF
导出
摘要 决策树方法是发现概念描述空间的一种特别有效的方法,是实例学习中具有代表性的学习方法,专门用于处理大量对象.如何快速建立简单可靠的决策树是一个重要的问题.文章引入PSO算法,并针对标准PSO算法易限于局部极小点的局限性,在保持了PSO算法结构简单可行特点的同时,利用惩罚函数方法,引入叉乘控制项,帮助算法摆脱局部极小点的束缚,提高了优化速度.将改进的PSO引入到决策树建树方法中,并与传统的决策树方法及使用遗传算法改进后的树进行比较,验证了其优越性. The decision tree method is the effective method of detecting for concept describing space and the representative learning way in exampling learning of which specially dispose mass object. Then how to establish the decision tree of simple and credible becomes the important problem. The paper introduces the Particle Swarm Optimize Algorithms, by adopting the method of punish function and the forking product controlling item, to conquer the shortcoming of the algorithm for getting into the scope around of local particle point. Building up decision tree by improved PSO, the paper gives the example to validate that the improved algorithm is better than the original decision tree method and by improved by GA.
出处 《小型微型计算机系统》 CSCD 北大核心 2005年第7期1206-1210,共5页 Journal of Chinese Computer Systems
关键词 决策树 粒子群 优化 decision tree particle swarm optimization
  • 相关文献

参考文献4

二级参考文献15

  • 1Kennedy J, Eberhart R.Particle Swarm Optimization[C].In : IEEE Int'l Conf on Neural Networks, 1995 : 1942-1948.
  • 2Shi Y,Eberhart R.A modified particle swarm optimizer[C].In:IEEE World Congress on Computational Intelligence, 1998:69-73.
  • 3Shi Y,Eberhart R C.Fuzzy Adaptive Particle Swarm Optimization[C].In : Proc Congress on Evolutionary Computation, 2001.
  • 4Lovbjerg M,Rasmussen T K,Krink T.Hybrid Particle Swarm Optimiser With Breeding and Subpopulations[C].In:Proc of the third Genetic and Evolutionary Computation Conference,2001.
  • 5Ciuprina G,Ioan D,Munteanu I.Use of Intelligent-Particle Swarm Optimization in Electrornagnetics[J].IEEE Trans on Magnetics,2002;38(2) : 1037-1040.
  • 6Clerc M,Kennedy J.The Particle Swarm-Explosion,Stability,and Convergence in A Multidimensional Complex Space[J].IEEE Trans.on Evolutionary Computation, 2002; 6 ( 1 ) : 58-73.
  • 7Van den Bergh F,Engelbrecht A P.Training Product Unit Networks Using Cooperative Particle Swarm Optimize-[C].In :Proc of the third Genetic and Evolutionary Computation Conference,2001.
  • 8Carlisle A,Dozier G.Adapting Particle Swarm Optimization to Dynamic Environments[C].In : Proc of Int'l Conf on Artificial Intelligence, 2000 :429-434.
  • 9Parsopoulos K E,Vrahatis M N.Particle Swarm Optimization Method in Muhiobjective Problems[C].ln:Peoc of the SAC 2002.
  • 10Brandstatter B,Baumgartner U.Particle Swarm Optimizatlon-MassSpring System Analogon[J].IEEE Trans on Magnetics, 2002 ; 38 (2) :997-1000.

共引文献449

同被引文献41

  • 1王振,刘茂.定量风险分析在恐怖袭击风险评估中的应用[J].中国公共安全(学术版),2006(4):18-22. 被引量:17
  • 2简基松.论恐怖主义犯罪的动机特征[J].湖北警官学院学报,2007,20(3):9-14. 被引量:3
  • 3韩松来,张辉,周华平.决策树的属性选取策略综述[J].微计算机应用,2007,28(8):785-790. 被引量:5
  • 4QUINLAN J R. Induction of decision tree[J].Machine Learning,1986, 1(1) :82-104.
  • 5PARSOPOULOS K E, VRAHATI S M N. Recent approaches to global optimization problems through particle swarm optimization [ J ]. Natural Comtmtin~.2002.1 ( 2/3 ) :235-306.
  • 6熊诗波,黄长艺.机械工程测试基础[M].北京:机械工业出版社,2006:188-211.
  • 7Olivier C, Vladimir V, Olivier B, et al. Choosing multiple parameter for support vector machines[J]. Machine Learning, 2002,46 : 131-159.
  • 8Cheong S M, Oh S H, Lee S Y. Support vector ma- chines with binary tree architecture for multi-class classification[J]. Neural Information Processing-Let- ters and Reviews, 2004,2(3):47-51.
  • 9戴日俊.基于紫外光信号的发电厂高压电气设备放电检测方法研究[D].保定:华北电力大学,2012..
  • 10GUO Jia,ZHANG Wei-li.Using Particle Swarm Optimiza- tion Scheme to Settlement Prediction[C].2011 Seventh In- ternational Conference on Natural Computation ( ICNC ).Shanghai:IEEE,2011:2373-2376.

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部