期刊文献+

THE INFLUENCE OF SHRINKAGE AND MOISTURE DIFFUSION ON IDEALIZED TOOTH STRUCTURE INVOLVING DEBONDING DAMAGE 被引量:2

THE INFLUENCE OF SHRINKAGE AND MOISTURE DIFFUSION ON IDEALIZED TOOTH STRUCTURE INVOLVING DEBONDING DAMAGE
下载PDF
导出
摘要 This study highlights the joint effect of early polymerization shrinkage and long-term moisture diffusion on the behavior of the restoration-tooth structure. The interphase debonding between particle and polymer resin in dental composite is taken into account by introducing the damage variable. The idealized model is designed and constructed for representing the restorationtooth structure, which consists of enamel, dentin, composite and interphase, each considered as homogenous material. The simulation is carried out using the general-purpose finite element software package, ABAQUS incorporated with a user subroutine for definition of damaged material behavior. The influence of Young's moduli of composite and interphase on stress and displacement is discussed. The compensating effect of water sorption on the polymerization shrinkage is examined with and without involving damage evolution. A comparison is made between the influence of hyper-, equi- and hypo-water sorption. Interfacial failure in the specific regions as well as cuspal movement has been predicated. The damage evolving in dental composite reduces the rigidity of composite, thus in turn reducing consequent stress and increasing consequent displacement. The development of stresses at the restoration-tooth interface can have a detrimental effect on the longevity of a restoration. This study highlights the joint effect of early polymerization shrinkage and long-term moisture diffusion on the behavior of the restoration-tooth structure. The interphase debonding between particle and polymer resin in dental composite is taken into account by introducing the damage variable. The idealized model is designed and constructed for representing the restorationtooth structure, which consists of enamel, dentin, composite and interphase, each considered as homogenous material. The simulation is carried out using the general-purpose finite element software package, ABAQUS incorporated with a user subroutine for definition of damaged material behavior. The influence of Young's moduli of composite and interphase on stress and displacement is discussed. The compensating effect of water sorption on the polymerization shrinkage is examined with and without involving damage evolution. A comparison is made between the influence of hyper-, equi- and hypo-water sorption. Interfacial failure in the specific regions as well as cuspal movement has been predicated. The damage evolving in dental composite reduces the rigidity of composite, thus in turn reducing consequent stress and increasing consequent displacement. The development of stresses at the restoration-tooth interface can have a detrimental effect on the longevity of a restoration.
出处 《Acta Mechanica Solida Sinica》 SCIE EI 2005年第2期110-122,共13页 固体力学学报(英文版)
基金 Project supported by the Research Grant Council of Hong Kong (No.PolyU5176/00E).
关键词 polymerization shrinkage water sorption restoration-tooth structure finite element method dental composite stress distribution displacement distribution polymerization shrinkage, water sorption, restoration-tooth structure, finite element method, dental composite, stress distribution, displacement distribution
  • 相关文献

同被引文献29

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部