期刊文献+

完全偶图的一类(1,2)因子分解

A Class of (1,2)—Factorizations of a Complete Graph
下载PDF
导出
摘要 图G的一个支撑子图F称为G的一个(1,2)因子,当F的每一个连通分支是路或圈.若G能够分解成边不交的(1,2)—因子的并,则称这样的并为G的一个(1,2)—因子分解.完全偶图Km,n存在具有最小边数和最大边数的(1,2)—因子,定理1和定理2给出了Km,n的上述(1,2)—因子分解. A spanning subgraph F of a graph G is said to be a (1,2)-factor of G, if every connected component of F is a path or a cycle. If a graph G can be resolved into the union of (1,2)-factors whose sets of edges are disjointed, the union is said to be a factorization of G. The complete graph K m,n has (1,2)-factors with minimum and maximum edges , and the (1,2)-factorizations of K m,n are given by Theorem 1 and Theorem 2.
作者 侯旻
出处 《南京工程学院学报(自然科学版)》 2005年第2期1-5,共5页 Journal of Nanjing Institute of Technology(Natural Science Edition)
基金 南京工程学院科研基金项目(KXJ04099)
关键词 (1 2)-因子 (1 2)-因子分解 (1,2)-factor (1,2)-factorization
  • 相关文献

参考文献5

  • 1[1]W.T.Tutte,The Subgraph Problem [J].Annals Discrete Math,1978,3:289 - 295.
  • 2[2]M.Kano and A.Saito,(a,b) - Factors of a Graph [J].Annals Discrete Math,1983,47 :113 - 116.
  • 3[3]M.Kano,(a,b)-Factorizations of a Graph [J].J.Graph Theory,1985,9:126 - 146.
  • 4[4]K.Heinrich,P.Hell and D.G.Kirkpatrick,A Simple Existence Criterion for (g,f)- Factors [J].Discrete Math,1990,85:315 - 317.
  • 5[5]B.Xu,Z.Liu and T.Tokuda,Connected Factors in K1,n-Free Graphs Containing a (g,f)-Factor [J].Graph and Combinatorics,1998,14:393-395.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部