期刊文献+

一株绿色木霉产外切β-葡聚糖苷酶条件及其纯化与性质的研究 被引量:2

Isolation, purification and characterization of exo-1,4-β-D-glucanase produced by a strain of Tridchoderma viride sp.
下载PDF
导出
摘要 从树林中腐烂木块上采集并筛选出一株分泌外切β葡聚糖苷酶(exo1,4βD glucanaseorcellobiohydrolase,CBH)的绿色木霉菌株.在100mL的锥形瓶中装入40mL培养基的产酶状况最好,其通气量最佳,培养液初始pH为8时绿色木霉产生的CBH活力最高.随绿色木霉生长时间的延长,CBH的活力与培养基中的葡萄糖含量呈交替的一高一低的波浪状变化.通过硫酸铵分部分离、葡聚糖G100凝胶过滤、DEAE纤维素52阴离子交换柱层析等方法使绿色木霉所产的CBH达到了电泳纯,纯化倍数为16.3.CBH的反应最适温度为60℃,最适pH为6.0,Km(底物为羧甲基纤维素钠)为17.34mg/mL. A strain of Tridchoderma viride sp. producing exo-1,4-β-D-glucanase (cellobiohydrolase,CBH) was isolated from a piece of rotten wood. Culturing in 100 mL conical flasks with 40 mL liquid medium provided optimal aeration and, with the liquid medium at an initial pH of 8, produced the maximal amount of CBH activity. Along with the growth of the mold, the activity of the CBH produced as well as the amount of glucose in the medium changed, fluctuating between high and low then low and high in turns. Through a series of purification procedures, including ammonium sulfate precipitation, sephadex G-100 gel filtration, and DEAE-cellulose 52 ion-exchange column chromatography, pure electrophoresis grade CBH was obtained at 16.3 times the concentration of the primary product. The optimal pH for CBH activity was about 6.0, the optimal temperature about 60 ℃,and the K_m (CMC-Na as substrate) was 17.34 mg/mL.
出处 《华南农业大学学报》 CAS CSCD 北大核心 2005年第3期69-73,共5页 Journal of South China Agricultural University
基金 华南农业大学校长基金资助项目(99003)
关键词 外切β-葡聚糖苷酶(CBH) 绿色木霉 酶活力 exo-1,4-β-D-glucanase (CBH) Trichoderma viride enzyme activity
  • 相关文献

参考文献12

二级参考文献22

共引文献213

同被引文献23

  • 1官家发,范成英,吴恰庆,张发群,江明,张义正.耐热芽孢杆菌E2菌株纤维素酶基因克隆的研究[J].Acta Genetica Sinica,1995,22(4):322-328. 被引量:6
  • 2Zang Y-HP, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems [ J ]. Biotechnol Bioeng, 2004b, 88 : 797 - 824.
  • 3Angenent LT, Karim K, Al- Dahhan MH,et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater[ J ]. Trends Biotechnol, 2004,22: 477 - 85.
  • 4Wyman CE. Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power[J]. Biotechnol Prog. ,2003,19: 254 - 262.
  • 5F. Xu, in: K. Ohmiya, K. Sakka,et al.Biotechnology of Lignocellulose Degradation and Biomass Utilization[M]. Uni Publishers, Tokyo, 2004. 793 - 804.
  • 6Ingrid P,Folke T,Barbel H.Fungal cellulytic enzyme production:A Review[J].Proc.Biochem.1991, 26:65-74.
  • 7Dewey D.Y. ,Mandels M. Cellulase: biosynthesis and applicatitions[J]. Enzyme Micro.Technol, 1980,2:91- 102.
  • 8Zhang Y- HP, Michael e.h., Jonathan r.m. Outlook for cellulase improvement: Screening and selection atrategies[J]. Biotech. Advances, 2006,24:452 -481.
  • 9Chose T K. Measurement of cellulase activities[J]. Pure and Application Chemistry, 1987,59:257 - 268.
  • 10Miller GL. Use of dinitrosalieylic acid reagent for determination of reducing sugars[J]. Anal Chem, 1959,31:426 - 428.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部