期刊文献+

一类广义中心对称矩阵的Procrustes问题

Procrustes Problems for a Class of Generalized Centrosymmetric Matrices
下载PDF
导出
摘要 设R∈n×n为广义反射矩阵满足R=RH=R-1≠±In.若G∈n×n满足RGR=G,则称G为广义中心对称矩阵。所有n×n阶广义中心对称矩阵的全体记为GCS n×n。考虑问题Ⅰ:给定X,Y,D∈n×p,求A,B∈GCS n×n,使得‖AX-BY-D‖=min。问题Ⅱ:给定A,B∈n×n,求(^A,^B)∈φ(X,Y,D)使得‖(^A,^B)-(A,B)‖=min(A,B)∈φ(X,Y,D)‖(A,B)-(A,B)‖(φ(X,Y,D)是问题Ⅰ的解集合)。文中给出了问题Ⅰ的通解表示及问题Ⅱ的唯一解^A,^B的表达式。 Let R∈^(n×n) be a nontrivial generalized reflection matrix satisfying R=R^H=R^(-1)≠±I_n.G∈^(n×n) is said to be the generalized centrosymmetric if RGR=G.The set of all n×n generalized centrosymmetric matrices is denoted by GCS^(n×n).GivenX,Y,D∈^(n×p),the matrices A,B∈GCS(^(n×n)) that can minimize ‖AX-BY-D‖(Frobenius norm),are characterized.Givne arbitrary ,∈^(n×n),the unique matrix (,) among the minimizers of ‖(AX-BY-D‖ in GCS^(n×n) that can minimize ‖(,)-(A,B)‖ are found.
作者 袁永新 戴华
出处 《华东船舶工业学院学报》 北大核心 2005年第3期33-38,共6页 Journal of East China Shipbuilding Institute(Natural Science Edition)
基金 国家自然科学基金资助项目(10271055)
关键词 PROCRUSTES问题 广义中心对称矩阵 最优逼近 奇异值分解 Procrustes problem generalized centrosymmetric matrix optimal approximation singular value decomposition
  • 相关文献

参考文献14

  • 1CHEN H C.Generalized reflexive matrices:special properties and applications[J].SIAM J Matrix Anal Appl,1998,19:140-153.
  • 2DATTA L,MORGERA S.On the reducibility of centrosymmetric matrices-applications in engineering problems[J].Circuits Systems Signal Process,1989,3(1):71-96.
  • 3TRENCH W F.Characterization and properties of matrices with generalized symmetry or skew symmetry[J].Linear Algebra Appl,2004,377:207-218.
  • 4TRENCH W F.Inverse eigenproblems and associated approximation problems for matrices with qeneralize dsymmetry or skew symmetry[J].Linear Algebra Appl,2004,380:199-211.
  • 5ANDREW A L.Eigenvectors of certain matrices[J].Linear Algebra Appl,1973,7:151-162.
  • 6ANDREW A L.Solution of equations involving centrosymmetric matrices[J].Technometrics,1973,15:405-407.
  • 7ANDREW A L.Centrosymmetric matrices[J].SIAM Rev,1998,40:679-698.
  • 8CANTONI A,BUTLER P.Eigenvalues and eigenveetors of symmetric centrosymmetric matrices[J].Linear Algebra Appl,1976,13:275-288.
  • 9GOOD I J.The inverse of a centrosymmetric matrix[J].Technometrics,1970,12:925-928.
  • 10PYE W C,BOULLION T L,ATCHISON T A.The pseudoinverse of a centrosymmetric matrix[J].Linear Algebra Appl,1973,6:201-204.

二级参考文献3

  • 1蒋正新,计算数学,1986年,8卷,47页
  • 2何旭初,广义逆矩阵的基本理论和计算方法,1985年
  • 3团体著者,广义逆矩阵引论,1982年

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部