期刊文献+

分布式遗传退火算法求解分布式配置问题 被引量:1

On Solving Distributed Configuration with Distributed Genetic Annealing Algorithms
下载PDF
导出
摘要 利用分布式约束满足的方法求解分布式配置问题时,在过约束和欠约束条件下都不能得到令人满意的结果.文中将分布式配置问题抽象为分布式组合最优化问题,把遗传退火算法扩展到分布式计算环境以求解分布式配置问题.以SOAP为基础搭建实验平台,在各种约束情况下,文中算法都给出了令人满意的实验结果.可见分布式遗传退火算法可以求解各种约束条件下的分布式配置问题. DCSP(distributed constraint satisfaction problem) algorithms can not give satisfactory result while solving distributed configuration in over-constrained or under-constrained situation. Then distributed configuration was regarded as distributed combinatorial optimization problem. The genetic annealing algorithms were expanded to distributed genetic annealing algorithms(DGAA) to solve distributed configuration problem. A test software platform was programmed based on SOAP(simple object access protocol). The computing results were satisfactory in any constraint situation. As a result, DGAA can solve distributed configuration problem in any constraint situation.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2005年第6期1335-1340,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60273056)
关键词 分布式配置 遗传退火算法 分布式组合最优化 SOAP distributed configuration genetic annealing algorithms distributed combinatorial optimization SOAP
  • 相关文献

参考文献9

  • 1Piller F, Schaller C, Reichwald R. Individualization based collaborative customer relationship management: Motives,structures, and modes of collaboration for mass customization and CRM [OL]. http: ∥ www.ioc-online.org/mitarbeiter/schaller/Literatur/ICRM 2002 - Paper. pdf, 2002
  • 2Faltings B, Freuder E C. Introduction: Configuration [J].IEEE Intelligent Systems, 1998, 13(4): 32~33
  • 3Jung H, Tambe M. Performance models for large scale multiagent systems: Using distributed POMDP building blocks[A]. In: Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent Systems [C]. NewYork: ACM Presg, 2003. 297~304
  • 4Ardissono L, Felfernig A, Friedrich G, et al. A framework for the development of personalized, distributed web-based configuration systems [ J ]. Artificial Intelligence, 2003, 24(3):93~110
  • 5Yokoo M, Hirayama K. Algorithms for distributed constraint satisfaction: A review [J]. Autonomous Agents and Multi-Agent Systems, 2000, 3(2): 198~212
  • 6Yao Xin. Optimization by genetic annealing [A]. In: Proceedings of the 2nd Australian Conference on Neural Networks (ACNN'91), Sydney, 1991. 94~97
  • 7陈勇,唐敏,童若锋,董金祥.基于遗传模拟退火算法的不规则多边形排样[J].计算机辅助设计与图形学学报,2003,15(5):598-603. 被引量:35
  • 8Ringwelski G, Schlenker H. Dynamic distributed constraint satisfaction with asynchronous solvers [oL]. http:∥citeseer.nj. nec. com/ringwelski02dynamic. html, 2002
  • 9Kowalczyk R. On solving fuzzy constraint satisfaction problems with genetic algorithms [A]. In: Proceedings of 1998 IEEE International Conference on Evolutionary Computation ( ICEC'98), Anchorage, 1998. 758 ~ 762

二级参考文献14

  • 1P C Gilmore, R E Gomory. A linear programming approach to the cutting stock problem-Part 1 [J ] . Operations Research,1961, 9(6): 848-859.
  • 2J E Beasley. Algorithms for unconstrained two-dimensional guillotine cutting [ J ] . Journal of the Operational Research Society, 1985, 36(4) : 297-306.
  • 3A A Farley. Mathematical programming models for cutting-stock problems in the clothing industry [ J ] . Journal of the Operational Research Society, 1988, 39( 1): 41-53.
  • 4M S Reda, E A Abd. An interactive technique for the cutting stock problem with multiple objects[J ] . European Journal of Operational Research, 1994, 78(3) : 304-317.
  • 5M Shpitalni, V Menevich. Optimal orthogonal subdivision of rectangular sheets [ J ] . Transactions of ASME Journal of Manufacturing Science end Engineering, 1996, 118(3) : 281-288.
  • 6M Adamowicz. The optimum two-dimensional allocation of irregular, multiple-connected shapes with linear, logical and geometric constralnts[D]. New York: New York University,1969.
  • 7H H Yanasse, A S I Zinober, R G Harris. Two-dimensional cutting stock with multiple stock sizes [ J ] . Journal of the Operational Research Society, 1991, 42(8) : 673-683.
  • 8S Jakobs. On genetic algorithms for the packing of polygons[J].European Journal of Operational Research, 1996, 88( 1 ) : 165-181.
  • 9A Ramesh Babu, N Ramesh Babu. Effective nestin4g of rectangular parts in multiple rectangular sheets using genetic and heuristic algorithms [ J ] . International Journal of Production Research, 1999, 37(7): 1625-1643.
  • 10G-C Han, S-J Na. Two-stage approach for nesting in two-dimensional cutting problems using neural network and simulated annesling[J]. Journal of Engineering Manufacture, 1996, 210(B6): 509-519.

共引文献34

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部