期刊文献+

一类具相互干扰捕食模型的全局渐近稳定性 被引量:2

Global Asymptotic Stability of a Lesli Predator-prey Model with Mutual Interference
下载PDF
导出
摘要 建立并分析一类具有相互干扰的Leslie捕食与被捕食模型,运用稳定性理论及方法得到了该模型正平衡点的全局渐近稳定性. we proposed and analyzed a class of Lesli predator-prey model with mutual interference and obtain global asymptotic stability of positive equilibrium point for the model by using the theory and method of stability.
出处 《广西民族学院学报(自然科学版)》 CAS 2005年第2期69-71,共3页 Journal of Guangxi University For Nationalities(Natural Science Edition)
关键词 Leslie捕食与被捕食模型 正平衡点 全局渐近稳定性 相互干扰 Leslie predator-prey model Positive equilibrium point Global asymptotic stability mutual interference
  • 相关文献

参考文献3

  • 1Leslie P H. Some funther notes on the use of matrices in population mathematics[J].Biometrika ,1948,35: 213-245.
  • 2Hsu S B, huang T W. Global stability for a class of predator-prey system[J].SIAM.J.Appl.Math. , 1995,55(3): 763-783.
  • 3Hassel m p.Metual interference between searching insect parasites[J]. Anim Ecol,1971,40:473-486.

同被引文献15

  • 1梁志清.一类基于比例确定的离散Leslie系统正周期解的存在性[J].生物数学学报,2004,19(4):421-427. 被引量:9
  • 2唐美兰,刘心歌,刘心笔.中立型时滞种群对数模型的正周期解[J].广西大学学报(自然科学版),2005,30(3):238-241. 被引量:2
  • 3CLARK C W. Mathematical bioeconomics:the optimal management of renewable resource[M]. 2nd ed. New York :John Wiley and Sons, 1990.
  • 4FAN Meng, WANG Ke. Optimal harvesting policy for single population with periodic coeffcients[J]. Math Biosci, 1998,152(2) : 165-177.
  • 5ALVAREZ H R, SHEPP L A. Optimal harvesting of stochastically fluctuating population [J]. Math Biosci, 1998,37:155-177.
  • 6ZHANG R Y, WANG Z C, CHEN Y, et al. Periodic solution of a single species discrete population model with periodic harvest stock[J]. Computers Math Appl, 2000,39(1) :77-90.
  • 7HUANG Yunjin, CHEN Fengde, ZHONG Li. Stability analysis of a prey-predator model with Holling type Ill response function incorporating a prey refuge[J]. Applied Mathematics and Computation, 2006,182(1) : 672-683.
  • 8TAPAN K K. Modelling and analysis of a harvested prey-predator system incorporating a prey refuge[J].Comput Math Appl,2006,185(1)..19-33.
  • 9LAKSHMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theory of impulsive differential equations[M]. Singapore.. World Scientific, 1989.
  • 10LAKMECHE A, ARINO O. Bifurcation of nontrivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment, dynamics of continuous[J]. Discrete and Impulsive System,2000(7) : 265-287.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部