摘要
周期时变线性系统系数矩阵的时变性与不可交换性是其精细积分算法设计中的瓶颈.应用Peano-Baker级数理论:首先在单周期内获得精细转移矩阵,然后利用周期性简化计算,这不仅有效地提高了全时域上的计算精度,而且还能节省较多计算量.本文设计了2个数值算例,与四阶R-K算法的数值解相比较,结果表明,本文建立的周期时变精细积分算法(PTHPD)有明显的优越性.
The time-varying and incommutable character of the coefficient matrix of periodically time-varying linear systems are the bottleneck of the design for high precision direct integration methods. This paper solved the difficult problem with the theory of Peano-Baker series:first, to get the precise transfer matrix in a single period, then to simplify the computation with the periodicity. This algorithm can not only improve the accuracy of computation in the whole time domain, but also save much computation. Two numerical examples were given, and the results show the periodically time-varying high precision direct integration method(PTHPD) is superior obviously to the fourth-order R-K method.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2005年第6期1016-1019,共4页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金资助项目(50376039)
教育部科学技术研究重点资助项目
关键词
精细积分
转移矩阵
Peano—Baker级数
周期时变线性系统
high precision direct integration
transfer matrix
Peano-Baker series
periodically time-varying linear systems