摘要
电力变压器是电力系统中的关键设备之一,变压器故障可能会造成长时间的供电中断.因此,尽早发现变压器故障具有重要的意义.介绍了能够在线监测变压器油中H2,CO,CH4,C2H4,C2H2,C2H6等6种气体在线监测装置的基本结构.根据油中各溶解气体的在线监测数据,采用灰色预测技术建立了灰色预测模型,并利用BPNN进行变压器的故障预测.该方法能够有效地预测未来时刻变压器油中溶解气体的浓度、诊断变压器在未来时刻的绝缘状况.现场运行结果表明,该方法能够满足工程实际的需要.
Power transformers are key elements in a power system. Failure of one power transformer may cause long interruptions in supply. It is therefore highly desirable to detect incipient failure as early as possible. The basic structure of the on-line monitoring unit is described. It can synchronously detect six kinds of gases dissolved in transformer oil, including H 2 , CO, CH 4 , C 2 H 4 , C 2 H 2 , C 2 H 6 . According to the on-line monitoring data and grey predicting theory, a predicting model is constructed and BPNN is used to diagnose transformer faults. It can availably predict the concentrations of the dissolved gases in transformer oil and diagnose insulation condition of transformer in future. The field operation results prove that this on-line fault predicting method is efficient and practicable.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2005年第7期34-37,共4页
Journal of Chongqing University
基金
国家杰出青年科学基金资助项目(50425722)
关键词
故障预测
在线监测
BP神经网络
油中溶解气体
fault predicting
online monitoring
BP neural network
dissolved gas in oil