期刊文献+

基于CPLD的图像传感器非均匀性校正 被引量:1

Realization for Nonuniformity Correction of Image Sensor Based on the CPLD
下载PDF
导出
摘要 任何类型的图像传感器都存在着不可避免的非均匀性问题,非均匀性直接影响了传感器的成像质量及其应用范围.为此,讨论了多点校正方法的原理和算法,设计了基于复杂可编程逻辑器件(CPLD)的非均匀性校正实现方案,并针对CL512J型自扫描光电二极管阵列(SSPA)图像传感器进行了实时多点校正实验.结果表明,该校正系统能够将CL512J的非均匀性从40%降到2%. Because any type of image sensor has the inevitable question of nonuniformity which directly affect the quality of image and its using range, the paper discusses the principle and algorithm of multi-point nonuniformity correction and designs the scheme of nonuniformity correction based on Complex Programmable Logic Device (CPLD). The CL512J Self Scanned Photodiode Array(SSPA) image sensor is used in the nonuniformity realtime correction experiment. The result of experiment shows the correction system can reduce the nonuniformity of this image sensor from 40% to 2%.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第7期43-46,共4页 Journal of Chongqing University
基金 云南省省院省校科技合作计划资助项目(102095920030007)
关键词 图像传感器 非均匀性 复杂可编程逻辑器件 自扫描光电二极管阵列 image sensor nonuniformity complex programmable logic device self scanned photodiode array
  • 相关文献

参考文献7

二级参考文献8

  • 1杨宜禾 岳敏.红外系统[M].北京:国防工业出版社,1985..
  • 2殷德奎.前视红外图像处理及其应用研究[博士学位论文].西北工业大学,1996..
  • 3Schulz M, Caldwell L. Non-uniformity correction and correctability of infrared focal plane arrays[J]. Infrared Physics & Technology, 1995.36:763~777.
  • 4Harris J G. Non-uniformity correction using the constant-statistics constraint:analog and digital implementations[A].SPIE[C], 1997.3061:895~905.
  • 5Majeed M. Hayat. Model-based real-time non-uniformity correction in focal plane array detectors[A].SPIE[C],1998.3377:122~131.
  • 6Scribner D A. Adaptive non-uniformity correction for IR focal plane arrays using neural networks[A]. SPIE[C], 1991.1541:100~108.
  • 7袁祥辉,固体图像传感器及其应用(修订版),1996年,68页
  • 8胡晓梅.红外焦平面探测器的非均匀性与校准方法研究[J].红外与激光工程,1999,28(3):9-12. 被引量:33

共引文献81

同被引文献34

  • 1刘磊 高太长 李浩.三种基于光学原理的降水类型识别技术.气象水文装备,2007,(2):20-22.
  • 2D. J. Griggs, D. W. Jones, M. Ouldridge et al.. The first WMO intercomparison of visibility measurement[C]. Instrumentand Observing Methods Report, 1990, 41: WMO/TD. 401.
  • 3Alexei Korolev. Reconstruction of the sizes of spherical particles from their shadow images, part I: theoretical considerations[J].J. Atmos Oceanic Technol. , 2006, 24(3):376-389.
  • 4Michael I. Mishchenko, Larry D. Travis, Andrew A. Lacis. Scattering, Absorption and Emission of Light by SmallParticles[M]. London: Cambridge, 2002. 3-8.
  • 5J. P. Fugal, R. A. Shaw. Cloud particle size distributions measured with an airborne digital in-line holographic instrument[J].Atmos. Meas. Technol. Discuss, 2009, 2(2):659-688.
  • 6R. A. Ellis, A. P. Sandford, G. E. Jones et al.. New laser technology to determine present weather parameters[J].Meas. Sci. Technol. , 2006, 17(7): 1715-1722.
  • 7Anton Kruger, Witold F. Krajewski. Two-dimensional video disdrometer: a description[J].J. Atmos. Oceanic Technol. , 2002, 19(5): 602-617.
  • 8S. Borrmann, R. Jaenicke. Application of microholography for ground-based in situ measurements in stratus cloud layers: a case study[J].J. Atmos. Oceanic Technol. , 1993, 10(3): 277-293.
  • 9C. N. Long, D. W. Slater, T. Tooman. Total sky imager model 880 status and testing results[C]. ARM, 2001. TR-004.
  • 10Brentha Thurairajah, Joseph A. Shaw. Cloud statistics measured with the infrared cloud imager (ICI)[J]. IEEE Trans. C.eosci. Pemote Sensing, 2005, 43(9) : 2001.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部