摘要
设A、B、C为任意给定的m×n、n×m、m×n矩阵,本文构造了一种特殊形式的矩阵。通过对此矩阵的初等变换,得到这三个矩阵秩之间的某些关系,并讨论了它的几个较有意义的用例。
In this paper, a special matrix is constructed on the condition that A,B,C are given as arbitrary m×n,n×m and m×n matrices,respectively. Through the elementary transformations for this matrix,certain relations among the ranks of these three matrices are obtained. And several more significant useful examples of it are discussed.
出处
《苏州科技学院学报(自然科学版)》
CAS
2005年第2期39-43,共5页
Journal of Suzhou University of Science and Technology (Natural Science Edition)
关键词
自反广义逆
秩
初等变换
块矩阵
reflexive generalized inverse
rank
elementary transformation
block matrices