期刊文献+

线性方程组二级迭代法的收敛速度

Convergence Rates of Two-stage Iterative Methods for Linear Systems
下载PDF
导出
摘要 二级迭代法由内、外迭代和内迭代次数三部分组成。给出了线性方程组二级迭代法R1-收敛因子的一个上界,这个上界由内、外迭代的R1-收敛因子和内迭代次数所决定,其主部为外迭代的R1-收敛因子。在矩阵单调性条件下,对于任何内迭代方法和任意内迭代次数,证明了外迭代的R1-收敛因子也是二级迭代法R1-收敛因子的下界。所得结果反映了内、外迭代的收敛速度以及内迭代次数对于二级迭代法收敛速度的综合影响。 Two-stage iterative method is comprised by the inner and outer iteration and the numbers of inner iteration. We find out an upper bound of R1-factor of two-stage iterative methods for solution of linear systems. And the upper bound is expressed applying the R1-factors of the inner and outer iteration and the numbers of the inner iteration; the premier parts of the upper bound is the R1-factor of outer iteration. Furthermore, for any inner iteration method and any numbers of the inner iteration, it is also showed that the lower bound of the R1-factor of the two-stage iterative method can also be given by the R1-factor of the outer iteration in the case of monotone matrices. The results indicate the effects of convergence rates of the inner and outer iteration and the numbers of inner iteration on the convergence rates of the two-stage iterative method.
作者 蔡放 熊岳山
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2005年第3期100-104,共5页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(60176028 60371036) 湖南省自然科学专项基金资助项目(02JJY5010)
关键词 线性方程组 二级迭代法 收敛速度 linear systems two-stage iterative method convergence rate
  • 相关文献

参考文献9

  • 1Lanzkron P J, Rose D J,Szyld D B. Convergence of Nested C lassical Iterative Methods for Linear Systems[J]. Numer. Math., 1991,58:685- 702.
  • 2曹志浩.线性方程组二级迭代法的收敛性[J].计算数学,1995,17(1):98-109. 被引量:14
  • 3Frommer A, Szyld D B. Hsplittings and Two-stage Iterative Methods[J]. Numer. Math., 1992,63:345-356.
  • 4Frommer A,Szyld D B. Asynchronous Two-stage Iterative Methods[J]. Numer. Math., 1994,69:141-153.
  • 5Nichols N K. On the Convergence of Two-stage Iterative Processes for Solving Linear Equations[J]. SIAMJ. Numer. Anal., 1973,10:460-469.
  • 6Bai Z Z, Migallón V, Penadés J,et al. Block and Asynchronous Two-stage Mthods for Mildly Nonlinear Systems[J]. Numer. Math., 1999,82:1-20.
  • 7O'Leary D P, White R E. Multi-splittings of Matrices and Parallel Solution of Linear Systems[J]. SIAM. Alg. Dis. Meth., 1985,6:630-640.
  • 8Varga R S. Matrix Iterative Analysis[M]. Prentice Hall, Englewood Cliffs, New Jersey, 1962.
  • 9Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Sciences[M]. New York:Academic Press, 1979.

二级参考文献1

  • 1曹志浩,Linear Algebra Appl

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部