摘要
弱双曲流形是一类包含中心流形作为其特例的不变流形.本文讨论了它的逼近问题,不仅给出了计算其逼近的方法,还估计了使得这一逼近有效的它的局部性半径. 同时给出了一个具体实例来展示这些计算和估计.
In this paper, we approximate weak hyperbolic manifolds, a kind of invariant manifolds which include center manifolds as a special case. We not only give a method to compute the approximation but also estimate the locality radius for which the approximation is effective. We also give an example to show how the computation and estimation work.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2005年第4期715-726,共12页
Acta Mathematica Sinica:Chinese Series
基金
国家杰出青年科学基金资助项目(10428104)
国家自然科学基金资助项目(10471101)
四川大学青年科学基金资助项目(0020105505017)
关键词
逼近
弱双曲流形
同宿轨
Approximation
Weak hyperbolic manifold
Homoclinic orbit