摘要
在信息检索中,代数理论是构建检索模型的重要手段之一,以代数理论为基础的检索模型克服了布尔模型不能进行部分匹配的缺点而广为采用。本文分析了代数理论的向量空间模型,并对该模型进行了扩展:用最小项标引词以反映词与词之间的关系,用奇异值分解来捕捉文献的语义结构;最后对这三种模型进行了比较。
In information retrieval, Algebra Theory is one of significant tools of Retrieval Modeling. The models on the basis of Algebra overcome the fault that partial matching can not be implemented within Boolean Model, then become more and more popular. This article analyses the Vector Space Model based on Algebra, and expands the model: expresses the index terms with minterm in order to reflect the relationship between terms, uses singular value decomposition to present the semantic structure of documents. At last, makes the compare between these models.
出处
《现代图书情报技术》
CSSCI
北大核心
2005年第7期30-33,共4页
New Technology of Library and Information Service
关键词
信息检索
数学模型
向量空间模型
广义向量空间模型
潜语义标引
Information retrieval Mathematics model Vector space model Generalized vector space model Latent semantic indexing