期刊文献+

表面局域态对一维声子晶体中水平剪切波传输特性的影响 被引量:3

Influence of the Surface Localized Modes on the Transmission Property of Shear Horizontal Waves Propagation through the 1D Phononic Crystals
下载PDF
导出
摘要 利用传递矩阵法,研究了一维声子晶体表面存在的表面局域态对水平剪切波传输特性的影响。由于表面局域态的存在,声波的透过率出现共振峰。共振峰的极值与入射角度和声子晶体层数有关,合适的入射角度和层数可以使声波完全透射。当入射角在一定范围内连续变化时,在较宽频率范围内均出现较大透过率。声子晶体的这一特性可以应用于高性能的阻抗匹配材料和声波滤波器中。 The influence of the surface localized modes on the transmissivity of shear horizontal waves propagation through the 1D phononic crystals was studied using the transfer matrix method. The particular resonance peak in transmissivity function is found due to the surface localized mode. The magnitude of the peak depends on both the number of periodic (N) of the phononic crystal and the oblique angle (θ) of incidence. For a special N and θ, the acoustic wave can be resonantly transmitted through the phononic crystal into solid thin film detector without any attenuation, in spite of the large acoustic mismatch between the substrate and detector. These resonant peaks will be found in a wider frequency range when the incidence angle changes in some ranges continually. The property of the phononic crystal may be useful for the impedance matching material and high-frequency acoustical filter.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2005年第3期425-430,411,共7页 Journal of Synthetic Crystals
基金 国家973计划资助项目(No.51307)
关键词 声子晶体 表面局域态 水平剪切波 phononic crystal surface localized mode shear horizontal wave
  • 相关文献

参考文献17

  • 1Djafari-Rouhani B, Maradudin A A, Wallis R F. Rayleigh Waves on a Superlattice Stratified Normal to the Surface [ J ]. Phys. Rev. B, 1983,29(12) :6454-6462.
  • 2Camley R E, Djafari-Rouhani B, Dobrzynski L, et al. Tansverse Elastic Waves in Periodically Layered Infinite and Semi-infinite Media[ J ]. Phys.Rev. B,1983,27(12) :7318-7329.
  • 3Djafari-Rouhani B, Dobrzynski L, Hardouin Duparc O, et al. Sagittal Elastic Waves in Infinite and Semi-infinite Superlattices [ J ]. Phys. Rev. B,1983,28(4) :1711,1719.
  • 4Tanaka Yukihiro, Tamura Shin-ichiro. Surface Acoustic Waves in Two-dimensional Periodic Elastic Structures [ J ]. Phys. Rev. B, 1998,58 ( 12 ):7958-7965.
  • 5Meseguer F,Holgado M, Caballero D, et al. Rayleigh-wave Attenuation by a Semi-infinite Two-dimensional Elastic-band-gap Crystal [ J ]. Phys.Rev. B, 1999,59 ( 19 ): 12619.
  • 6Vines R E, Wolfe J P. Scanning Phononic Lattices with Surface Acoustic Waves[ J]. Physica B, 1999,263-264:567-570.
  • 7Tartakovskaya E V. Surface Waves in Elastic Band-gap Composites[J]. Phys. Rev. B,2000,62(16) :11225-11229.
  • 8Tamura Shin-ichiro, Hurley D C, Wolfe J P. Acoustic-phonon Propagation in Superlattices [ J ]. Phys. Rev. B, 1988,38 ( 2 ): 1427 -1449.
  • 9Kato Hatsuyoshi, Maris H J,Tamura Shin-ichiro. Resonant-mode Conversion and Transmission of Phonons in Superlattices [ J ]. Phys. Rev. B, 1996,
  • 10Mizuno Seiji, Tamura Shin-ichiro. Theory of Acoustic-phonon Transmission in Finite-size Superlattice Systems [ J ]. Phys. Rev. B, 1992,45 (2) :734-53(12) :7884-7889.

二级参考文献13

  • 1[1]Joannopoulos J D, Meade R D, Winn J N. Photonic Grustals[M]. Princeton:Princeon University Press, 1995.
  • 2[2]Yablonovitch E. Inhibited Spontaneous Emission in Solid-state Physics and Electronics[J]. Physics Review Letters, 1987,58:2059.
  • 3[3]John S. Strong Location of Photons in Certain Disordered Dielectric Superlattices[J]. Physics Review Letters, 1987; 58:2486.
  • 4[9]Wu F G, Liu Z Y, Liu Y Y. Acoustic Band Gaps in 2D Liquid Phononic Crystals of Rectangular Stnucture[J]. Journal of Physics D:Applied Physics, 2002,35:162.
  • 5[10]Kushwaha M S, Djafari-Rouhani B. Band-gap Engineeringin Two-dimmsional Periodic Photonic Crystals[J]. Journal of Applied Physics, 2000,88:2877.
  • 6[11]Vasseur J O, Deymier P A, Chenni B. Experimental and Theoretical Evidence for the Existence of Absolute Acoustic Band Gaps in Two-dimensional Solid Phononic Crystals[J]. Physics Review Letters ,2001,86:3012.
  • 7[12]Kafesaki M, Penciu R S, Economou E N. Air bubbles in Water:A Strongly Multiple Scattering Medium for Acoustic Waves[J]. Physics Review Letters ,2000,84:6050.
  • 8[13]Garcla-Pablos D, et al. Theory and Experiments on Elastic Band Gaps [J]. Physics Review Letters, 2000,84:4349.
  • 9[14]Liu Z Y, et al. Elastic Wave Scattering by Periodic Structures of Spherical Objects: Theory and Experiment[J]. Physics Review B, 2000,62(4):2446.
  • 10吴福根,刘有延.二维周期性复合介质中声波带隙结构及其缺陷态[J].物理学报,2002,51(7):1434-1438. 被引量:53

共引文献14

同被引文献65

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部