摘要
本文证明了如下结果:设N=π~1m^2是一个奇完全数,这里π是奇素数且π≡l≡1(4)。如果3^(11)|σ(m^2),则N至少有6个素因数≡1(3),由此结果证明了若n是一个恰有8个不同素因数的奇完全数,且3·5·11|n,则3~4||n或3~6||n。
In this paper, the following result is proved: Let N=π~1m^2 be an odd perfectnumber with an odd prime number π≡l≡1 (mod 4). It has at least 6 primefactors≡1 (mod 3) if 3^(11)|σ(m^2). Hence, n to be an odd perfect number whichhas just 8 distinct prime factors and obeies relation 3·5·11|n leads to 3~4‖n or3~6‖n.
出处
《湖南教育学院学报》
1994年第2期1-6,共6页
Journal of Hunan Educational Institute