摘要
就布尔型的高维数据提出了一种异常检测方法,通过定义反映数据稀疏程度的覆盖系数,搜索其低维子空间里的异常模式来检测异常。该方法使用遗传算法来优化搜索过程,并取得了较好的结果。
In this paper, we propose a algorithm of outlier detection for high dimensional data whose attributes are all boolean. It searches outlier mode in low dimensional subspace by defining a covered coefficient which can reflect the sparse degree of data. In this algorithm, we optimize our search process by using genetic algorithm and get a good iesult.
出处
《石家庄铁路职业技术学院学报》
2005年第2期83-87,共5页
Journal of Shijiazhuang Institute of Railway Technology
关键词
异常检测
布尔型
遗传算法
高维空间数据
outlier detection high dimensional data bootean genetic alglorithm