期刊文献+

Toeplitz P-阵的完成问题 被引量:1

Toeplitz P-matrix Completion Problem
下载PDF
导出
摘要 部分阵的完成问题有着广泛的应用背景,本文从研究行列式符号的角度出发,主要讨论了P-阵的完成问题,指出三阶的部分位置对称Toep litz P-阵都有相应完成,给出了四阶Toep litz P-阵有相应完成的充分条件,在此基础上给出了n×n部分位置对称Toep litz P-阵有相应完成的一些模式. For a class of real Toeplitz P-matrix,a list of positions in an n-by-n matrix (a pattern)is said to have Toeplitz P-matrix completion if every partial Toeplitz P-matrix that specifies exactly these positions can be completed to a Toeplitz P-matrix.It was discussed that the partial position symmetric Toeplitz p-matrix of order 3 have corresponding completion and the partial position symmetric Toeplitz P-matrix of order 4 have completion under certain condition.Some sufficient conditions that guarantee an n-by-n partial position symmetric Toeplitz P-matrix has completion were given.
作者 何明 卢琳璋
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第4期450-452,共3页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(10271099)资助
关键词 TOEPLITZ 充分条件 行列式 对称 三阶 四阶 P_0 matrix partial position symmetry Toeplitz matrix completion
  • 相关文献

参考文献5

  • 1Choi J Y,Dealba L M, Hogben L,et al. The nonnegative P0-matrix completion problem[J]. Electron. J. Linear Algebra,2003,10: 46- 59.
  • 2DeAlba L M,Hardy T L, Hogben L,et al. The(weakly) sign symmetric P-matrix completion problems [J ].Eletron. J. Linear Algebra, 2003,10: 257- 271.
  • 3Johnson C R,Smith R L. The completion problem for Mmatrices and inverse M-matrices[J]. Linear Algebra and its Aplications, 1996,241 - 243: 655 - 667.
  • 4Johnson C R,Kroschel B K. The combinatorially symmetric P-matrix completio problem[J]. Electronic JournalLinear Algebra, 1996, (1): 59- 63.
  • 5Choi J Y,Dealba L M. The P0-matrix completion problem[J]. The Electronic Journal of Linear Algebra,2002, (1):1-20.

同被引文献17

  • 1阮秋琦,阮宇智.数字图像处理[M].北京:电子工业出版社,2007.
  • 2柳建军.一种改进的双参数图像恢复正则化算法[C]//第十二届全国图像图形学学术会议论文集.北京:清华大学出版社,2005:632-636.
  • 3Katsaggelos A K.Digital Image Restoration[M].Berlin,Germany:Springer-Verlag,1991.
  • 4Saad Y,Schultz M H.GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems[J].Siam Journal on Scientific&Statistical Computing,1986,7(3):856-869.
  • 5Hernández V,Ibá?ez J J,Peinado J,et al.A GMRES-based BDF method for solving differential riccati equations[J].Applied Mathematics and Computation,2008,196(2):613-626.
  • 6Liesen J,Tichy P.The field of values bound on ideal GMRES[J].Eprint Arxiv,2012,26(3):44-53.
  • 7Saad Y.Iterative methods for sparse Linear System[M].PWS Publishing Company,a Division of Intermational Thomson Publishing Inc.,VSA,1996.
  • 8Saberi N H,Ghazvini H.Weighted restarting method in the weighted Arnoldi algorithm for computing the eigenvalues of a nonsymmetric matrix[J].Applied Mathematics and Computation,2006,175(2):1276-1287.
  • 9Najafi H S,Zareamoghaddam H.A new computational GMRES method[J].Applied Mathematics and Computation,2008,199(2):527-534.
  • 10Cao Z H,Yu X Y.A note on weighted FOM an GMRES for solving nonsymmetric linear systems[J]Applied Mathematics and Computation,2004,151(3)719-727.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部