期刊文献+

基于ν-SVR算法的边坡稳定性预测 被引量:40

PREDICTING SLOPE STABILITY BASED ON ν-SVR ALGORITHM
下载PDF
导出
摘要 提出基于一种改进支持向量机算法(ν-SVR)的边坡稳定性预测方法,直接利用边坡的特征参数快速预测边坡稳定性。为解决算法中模型选择困难的问题,用留一法设计预测模型,用网格搜索法搜索最优参数。留一法可以避免传统方法中根据经验确定预测模型的缺点,较为客观地获取合适的预测模型。网格搜索法可以保证搜索到合适的参数。计算结果显示,联合运用这两种方法可以获得合适的预测模型。利用该预测模型对82个圆弧破坏边坡实例中的71个实例进行学习,对另外11个实例进行推广预测,取得了较好的效果,其预测精度明显优于一种改进BP神经网络算法和常规SVR算法,与GA-BP神经网络算法相近。在此基础上,提出基于ν-SVR算法的边坡设计方法,能够快速、准确的获取不同方案下的边坡安全系数,评价其稳定性,为选择经济合理的边坡设计方案提供决策依据。 A slope stability predicting model based on v-SVR algorithm, which uses only characteristic parameters of slopes, is put forward. To overcome the difficulty in model selection in the algorithm, leave-one-out method is used to design predicting model; and grid-search method is used to search suitable values of parameters of the predicting model. Leave-one-out method can select appropriate model objectively, avoiding the shortcoming of designing model by experience. The search result shows that with these two methods, the appropriate predicting model can be searched. Applying the predicting model to predict safety factors of 11 slopes after learning with other 71 samples; the result is satisfactory. It is more accurate than a modified BP algorithm and classical SVR; and it shows that the proposed model is effective. Moreover, a new method based on v-SVR algorithm is presented to guide slope design. It can acquire slope safety factors of different schemes by characteristic parameters of slopes quickly and accurately, and evaluate the stability of slope, which will facilitate the determining of an economic and safe slope design scheme.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2005年第14期2468-2475,共8页 Chinese Journal of Rock Mechanics and Engineering
关键词 岩土工程 支持向量机 边坡稳定性 v-SVR(support VECTOR regression)预测 边坡设计 模型选择 留一法 网格搜索法 Accident prevention Algorithms Design Forecasting Geotechnical engineering Mathematical models
  • 相关文献

参考文献16

二级参考文献42

  • 1冯夏庭,王泳嘉,卢世宗.边坡稳定性的神经网络估计[J].工程地质学报,1995,3(4):54-61. 被引量:116
  • 2夏元友,朱瑞赓,李新平.边坡稳定性研究的综述与展望[J].金属矿山,1995,24(12):9-12. 被引量:29
  • 3冉恒谦,谢建清,张二海.层次分析法在滑坡稳定性评判中的应用[J].西部探矿工程,1997,9(4):6-8. 被引量:14
  • 4陈祖煜 邵长明.最优化方法在确定边坡最小安全系数方面的应用[J].岩土工程学报,1988,4.
  • 5陶宝祺.智能材料结构[M].北京:国防工业出版社,1999..
  • 6赵辉 李进生 郭秀林.地下水位动态的人工神经网络研究[A]..农业节水与地下水开发利用[C].,2000..
  • 7冯夏庭.智能岩石力学及其在岩土工程中的应用:岩土力学新计算方法讲义[R].武汉:中国科学院武汉岩土力学研究所,1999..
  • 8[1]T. Masters ,Neural,Novel& Hybird Algorithms for Tim Series Pre-diction[M], John Wiley & Sons. Inc., 1995.
  • 9[2]A. D. Papalexopoulos and T. C. Hesterberg , A regression based approach to short term system load forecasting[C], Proceedings of 1989 PICA Conference , 1989:414-423,
  • 10[3]K. L. Ho , Y. Y. Hsu , C. F. Chen , T. E. Lee , C. C. Liang , T . S. Lai , and K. K. Chen , Short term load foreasting of Taiwan power system using a knowledge-based expert system[J], IEEE Tans.on Power Systems , 1990,5(4):1214-1221.

共引文献730

同被引文献356

引证文献40

二级引证文献286

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部