摘要
通过粗糙集获取知识表达系统的分类规则,用产生的规则对神经网络进行编码,并利用遗传算法对初步学习后的神经网络的权值进行优化,最终得到一个神经网络模式识别器。举例说明了采用这种方法得到模式识别器的过程及其对待识别对象的学习和分类效果。结果表明:采用粗糙规则对神经网络编码可以缩短神经网络的训练过程,遗传算化对神经网络权值的优化可在一定程度上提高模式识别的精度。
Gives a pattern recognition apparatus based on picking -up rules of recognizable objects and u-sing these rules to encode and train the neural network. Uses genetic algorithm to optimize the networks ' weights. Gives an example to show the pattern recognition apparatus has high efficiency in pattern recognition. The result of the example shows the encoding of rules can shorten the time of net - training and the optimization of the net weights can improve the pression of recognition.
出处
《西南科技大学学报》
CAS
2005年第2期6-9,共4页
Journal of Southwest University of Science and Technology
基金
四川省绵阳市科技局 智能优化控制方法研究(2001G011)
关键词
模式识别
粗糙集
神经网络
遗传算法
pattern recognition
rough sets
neural network
genetic algorithm