期刊文献+

电磁场计算中的无网格局部Petrov-Galerkin方法 被引量:3

Local petrov - galerkin method for electromagnetic field computation
下载PDF
导出
摘要 无网格局部Petrov-Galerkin方法(MLPG)建立在局部积分弱形式的基础之上,不依赖于背景网格,而只是在所考虑点的局部区域及其边界上积分,灵活方便,有利于并行计算的实现,且容易推广到非线性与非均匀介质的问题。将此方法引入电磁场计算,并且详细探讨了局部域上的积分策略,给出了一种较为简便且精确的积分方案。数值试验结果表明,MLPG方法是计算电磁场一种有效可靠的算法,计算结果优于一般高斯积分。 MLPG method is a true meshless method. Based on local integral weak forms, it involves only sub - domains and sub - boundaries centered at the node in question instead of background meshes. The flexibility leads to convenient application in parallel computations of large - scale model and extensibility to nonlinear problems and inhomogeneous medium problems . This paper introduces MLPG method for electromagnetic field computation. After analyzing the factors of local sub - domains integration, a simple and accuracy scheme is presented. Two static examples are solved by MLPG. The numerical results show that MLPG method is efficient and reliable for electromagnetic field computation, and the given integral method is better than the usual Gauss integral.
出处 《电机与控制学报》 EI CSCD 北大核心 2005年第4期397-400,405,共5页 Electric Machines and Control
关键词 MLPG 最小二乘法 电磁场计算 数值积分 MLPG least square electromagnetic field computation numerical integration
  • 相关文献

参考文献5

二级参考文献31

  • 1ONATE E, IDELSOHN S, ZIENKIEWICZ O C, et al. A stabilized finite point method for analysis of fluid mechanics problems [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4): 315-346.
  • 2BELYTSCHKO T, KRONGAUZ Y, ORGAN D, et al.Meshless methods: an overview and recent developments[3]. Computer Methods in Applied Mechanics and Engineering,1996, 139(1-4): 3-47.
  • 3PERRONE N, KAO R. A general finite difference method for arbitrary meshes [J]. Computer and Structures, 1975, 5(1):45 - 57.
  • 4LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. The Astronomical Journal, 1997, 82(12): 1013 - 1024.
  • 5LISZKA T, ORKISZ J. The finite difference method at arbitrary irregular grids and its application in applied mechanics [J], Computers and Structures, 1979, 11 (1-2): 83- 95.
  • 6MONAGHAN J J. Why particle methods work [J]. SIAM J Sci Stat Comput, 1982, 3(4): 422-433.
  • 7MONAGHAN J J. An introduction to sph [.I]. Computer Physics Communications, 1987, 48(1):89- 96.
  • 8NAYROLES B, TOUZOT G, VILLON P. Generalizing the finite element method: Diffuse approximation and diffuse elements [J]. Computational Mechanics,1992, 10(5):307-318.
  • 9LIU W K, OBERSTE-BRANDENBURG C. Reproducing kernel and wavelet particle methods[A]. Symposium on Aerospace Structures: Nonlinear Dynamic and System Response [C], New Orleans, Louisiana, USA: Publication of American Society of Mechanical Engineers, Aerospace Division, 1993, 33:39- 55.
  • 10BELYTSCHKO T, LU Y Y, GU L. Element free Galerkin methods [3]. International Journal for Numerical Methods in Engineering, 1994,37(2):229- 256,.

共引文献25

同被引文献34

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部