摘要
无网格局部Petrov-Galerkin方法(MLPG)建立在局部积分弱形式的基础之上,不依赖于背景网格,而只是在所考虑点的局部区域及其边界上积分,灵活方便,有利于并行计算的实现,且容易推广到非线性与非均匀介质的问题。将此方法引入电磁场计算,并且详细探讨了局部域上的积分策略,给出了一种较为简便且精确的积分方案。数值试验结果表明,MLPG方法是计算电磁场一种有效可靠的算法,计算结果优于一般高斯积分。
MLPG method is a true meshless method. Based on local integral weak forms, it involves only sub - domains and sub - boundaries centered at the node in question instead of background meshes. The flexibility leads to convenient application in parallel computations of large - scale model and extensibility to nonlinear problems and inhomogeneous medium problems . This paper introduces MLPG method for electromagnetic field computation. After analyzing the factors of local sub - domains integration, a simple and accuracy scheme is presented. Two static examples are solved by MLPG. The numerical results show that MLPG method is efficient and reliable for electromagnetic field computation, and the given integral method is better than the usual Gauss integral.
出处
《电机与控制学报》
EI
CSCD
北大核心
2005年第4期397-400,405,共5页
Electric Machines and Control
关键词
MLPG
最小二乘法
电磁场计算
数值积分
MLPG
least square
electromagnetic field computation
numerical integration