摘要
本文研究了有限元近似可计算的误差界,利用“二次插值过渡”方法,获得二维线性、双线性有限元和三维三线性有限元的新的插值常数估计值.理论分析和数值实验表明该结果是有效的,发展了P.Arbenz等人的工作.
This article discusses the computable error bounds in the finite element method. We adopt quadratic interpolation transition to get the new interpolation constant estimates of finite elements for the two-dimensional linear(bilinear) finite element and the three-dimensional tri-linear finite element. Theoretical analysis and numerical experiments prove these results are effective, which develop the works of P.Arbenz, etc.
出处
《数学杂志》
CSCD
北大核心
2005年第4期468-472,共5页
Journal of Mathematics
基金
贵州省科学技术基金资助项目(2003)3001.
关键词
有限元法
插值误差
先验估计
可计算误差界
finite element method
interpolation error
priori estimate
computable error bounds