期刊文献+

表碛下冰面消融的模拟与估算 被引量:8

Estimation of Ice Ablation under a Debris Cover
下载PDF
导出
摘要 根据热传导理论和能量平衡原理建立了一个简单的数学模型,对表碛下冰面的融化热进行了估算.模型将表碛分为三层:第一层冰碛以剧烈的温度变化和夜间负温梯度的存在为特征;第二层为中间过渡层,温差和温度变化都较小;第三层为靠近下伏冰体的薄层冰碛,以温度低和变化稳定为特征.模型仅以地表温度时间序列、表碛厚度和导热系数、土壤热容量等参数为计算输入,即可对表碛不同层位的土壤温度及其下部冰体融化所需热量进行模拟估算.在科其喀尔冰川表碛区选取了3个具有不同表碛厚度的试验点(Spot1,0.8m;Spot2,1.5m;Spot3,2.1m)进行了模型测试.模型试验表明,模型对于不同厚度表碛下冰面融化热的模拟是较好的,然而对于不同层位地温序列的模拟仍有一定的偏差,造成这些偏差的原因主要是来自于模型假设和土壤温度垂向上的时间相位差.模拟结果同时也显示了不同表碛厚度下冰面消融的差异,冰面消融热平均分别为:Spot1:26.87W·m-2,Spot2:9.81W·m-2,Spot3:6.92W·m-2. In this paper a simple numerical model is developed to estimate the ice ablation under a debris cover on the basis of heat transfer theory and energy conservation theory. To a given debris cover, three soil thermal layers are classified in the model. Debris layer 1 is characterized by an intense temperature vaxiation and a negative temperature gradient in the nighttime; within layer 2 the temperature is generally changing slowly; debris layer 3 is characterized by a low temperature and a feeble variation of the debris temperature. The model can calculate the temperatures of different interfaces with a given surface temperature, depth and thermal properties of the debris, and then calculate the heat for ice melting. A case study is carried out on the debris-covered area of Koxkar Glacier to the northwest of Tarim basin, to test the model. Three different spots with ice depths of 0 ^8 m (Spot 1), 1.5 m (Spot 2) and 2.1m (Spot 3), respectively, are selected in the examination. The case study shows that the model is relatively good for the estimation of heat that is consumed for ice ablation. For the debris temperature series of different depths, however, there is still an inconsistency between the simulated and observed values. The main reasons for this inconsistency might be attributed to the improper assumption in the simplified model and the phase lag in the vertical debris temperature profile. Estimation of ablation heat indicates a difference among the three spots. Heat for ablation under a debris cover is 26.87 W 5m -2 for Spot 1, 9.81 W 5m -2 for Spot 2 and 6.92 W 5m -2 for Spot 3, respectively.
出处 《冰川冻土》 CSCD 北大核心 2005年第3期329-336,共8页 Journal of Glaciology and Geocryology
基金 国家自然科学基金项目(40371026) 国家自然科学基金重大项目(90202013)资助
关键词 表碛 冰面融化 地表温度 科其喀尔冰川 debris cover ice ablation surface temperature Koxkar Glacier
  • 相关文献

参考文献19

  • 1Perrin C,Michel C,Andréassian V.Does a large number of parameters model performance? Comparative assessment of common catchment model structures on 429 catchments . Journal of Hydrology, 2001, 242: 275-301.
  • 2王书功,康尔泗,李新.分布式水文模型的进展及展望[J].冰川冻土,2004,26(1):61-65. 被引量:40
  • 3关志成,段元胜.寒区流域水文模拟研究[J].冰川冻土,2003,25(S2):266-272. 被引量:20
  • 4фtrem G.Ice melting under a thin layer of moraine,and the existence of ice cores in moraine ridges .Geografiska Annualer,1959, 41(4): 228-230.
  • 5Loomis S R.Morphology and ablation processes on glacier ice . Proc. Ass. Am. Geogr.,1970, 2: 88-92.
  • 6Mattson L E,Gardner J S.Energy exchange and ablation rates on the debirs-covered Rakhiot Glacier, Pakistan . Zeits. Gletscherk. Glaziageol.,1989, 25(1): 17-32.
  • 7Rana B,Nakawo M, Gukushima Y, et al .Application of a conceptual precipitation-runoff model (HYCYMODEL) in a debris-covered glacierized basin in the Langtang Valley,Nepal Himalaya . Annuals of Glaciology, 1997, 25: 266-231.
  • 8蒲健辰,姚檀栋,段克勤.慕士塔格峰洋布拉克冰川消融的观测分析[J].冰川冻土,2003,25(6):680-684. 被引量:22
  • 9Kraus H.An energy balance model for ablation in mountain areas . Snow and Ice, IAHSP, 2000, 104: 74-82.
  • 10Nakawo M,Yong G J.Field experiment to determine the effect of a debris layer on ablation of glacier ice .Annals of Glaciology,1981, 27: 85-91.

二级参考文献21

  • 1苏珍,刘时银,王志超.慕士塔格山和公格尔山的现代冰川[J].自然资源学报,1989,4(3):241-246. 被引量:21
  • 2Pu Jianchen Yao Tandong(蒲健辰 姚檀栋).Study on mass balance of Small Dongkemadi Glacier(冬克玛底支冰川物质平衡研究[A])[A]..青藏高原冰川气候与环境[C].Beijing: Science Press(北京:科学出版社),1993.60-68.
  • 3[2]Famiglietti J S, Wood E F, Sivapalan M, et al. A catchment scale water balance model for FIFE[J]. Journal of Geophysics Research, 1992, 97(D17): 18 997-19 007.
  • 4[3]Beven K J, Kirkby M J. A physically based variable contributing area model of basin hydrology[J]. Hydrological Science Bulletin, 1979, 24(1):43-69.
  • 5[4]Wigmosta M S, Vail L W, Lettenmaier D P. A distributed hydrology-vegetation model for complex terrain [J]. Water Resources Research, 1994, 30(6): 1 665-1 679.
  • 6[5]Goodchild M F. The state of GIS for environmental problem-solving [A]. Goodchild M F ed. Environmental Modeling with GIS[C]. New York: Oxford University Press, 1993.
  • 7[6]Ross M A, Tara P D. Integrated hydrologic modeling with geographic information system [J]. Journal of Water Resources Planning and Management, 1993, 119:129-139.
  • 8[7]Pullar D, Springer D. Towards integrating GIS and catchment models [J]. Environmental Modeling and Software, 2000, 15: 451-459.
  • 9[8]Schultz G A. Remote Sensing applications to hydrology: runoff [J]. Hydrological Science Journal, 1996, 41(4): 453-476.
  • 10[9]Biftu G F, Gan TY. Semi-distributed, physically based, hydrologic modeling of Paddle River Basin, Alberta, using remotely sensed data [J]. Journal of Hydrology, 2001, 244: 137-156.

共引文献84

同被引文献126

引证文献8

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部