期刊文献+

天山南坡科其卡尔巴契冰川度日因子变化特征研究 被引量:34

Study of the Positive Degree-day Factors on the Koxkar Baqi Glacier on the South Slope of Tianshan Mountains
下载PDF
导出
摘要 度日模型是估算冰川消融的一种简单而有效的方法.根据科其卡尔巴契冰川2003年的观测资料,分析了该冰川度日因子的空间变化规律及其影响因素.研究表明:各高度上的度日因子,介于2.0~9.7mm·℃-1·d-1之间变化,平均值为5.7mm·℃-1·d-1,与青藏高原各冰川及其它地区冰川相比较小;随着海拔的增高,度日因子随之递增;随平均气温的升高而随之递减.由于冰面状况复杂,度日因子变化幅度较大,裸冰区的度日因子明显大于表碛覆盖区.人为测量误差、反照率、地形等对度日因子的影响也不容忽视. The degree-day method is one of the simplest but sufficiently accurate schemes to estimate ablation on a glacier. It bases on linear correlation between ablation and sum of daily mean temperatures above melting point, which is called the positive degree-day sum (PDD) during a period. The factor linking the ablation to PDD is called the positive degree-day factor. Based on ablation and PDD, the degree-day factors are calculated. The degree-day factors range from 2.0 to 9.7 mm 5℃ + {-1 }·d + {-1 }, and its average value is 5.7 mm 5℃ + {-1 }·d + {-1 }. There are some factors influencing the degree-day factors on the Koxkar Baqi Glacier, including altitude, surface condition of the glacier, albedo and terrain. The study shows that: 1) The degree-day factor depends on altitude on the Koxkar Baqi Glacier; in general, the degree-day factor increases as altitude increases, then, the factor at higher altitude is larger than that at lower altitude, which is mainly due to the ablation caused by Absorbed global radiation at the high altitude, where the PDD is low due to low summer air temperature. 2) The degree-day factor of the Koxkar Baqi Glacier decreases as the mean temperature increases, as what observed in Dongkemadi Glacier, July 1 st Glacier, Yala glacier and AX010 Glacier 3) The surface condition of a glacier, including coverage of debris and snow, surface slope, and so on, is an important factor to the degree-day factor on the Koxkar Baqi Glacier. In the ablation area of the Koxkar Baqi Glacier, the zone below 3 900 m a.s.l. is covered with debris, and the zone above 3 900 m a.s.l. is debris-free; the depth of the debris varies from 0 to 250 cm in general. Debris has a strong influence on the surface energy balance and melting of the underlying ice. The surface debris layer works as a good insulator on the Koxkar Baqi Glacier. The factor in the debris-free area is larger than that in the debris-covered area, because of the main physical characteristics of the debris, such as the thermal resistance and albedo, which control the heat conduction to the ice-debris interface. It would be useful to understand the dependence of ablation on degree-day factor in the Koxkar Baqi Glacier, so that one can estimate the contribution of the Koxkar Baqi Glacier melting, using the degree-day method while calculating total discharge from the glacier basin.
出处 《冰川冻土》 CSCD 北大核心 2005年第3期337-343,共7页 Journal of Glaciology and Geocryology
基金 国家自然科学基金重大科学计划项目(90202013) 国家自然科学基金项目(40371026) 中国科学院知识创新工程重大项目(KZCX3SW33903)资助
关键词 科其卡尔巴契冰川 冰川消融 度日因子 正积温 Koxkar Baqi Glacier glacier ablation degree-day factor PDD
  • 相关文献

参考文献29

  • 1Braithwaite R J, Zhang Y. Sensitivity of mass balance of five glaciers to temperature changes assessed by tuning a degree-day model . J. Glaciology, 2000, 46(152): 7-14.
  • 2Laumann T, Reeh N. Sensitivity to climate change of the mass balance of glaciers in southern Norway . J. Glaciology, 1993, 39(133): 635-665.
  • 3刘时银,丁永建,王宁练,谢自楚.天山乌鲁木齐河源1号冰川物质平衡对气候变化的敏感性研究[J].冰川冻土,1998,20(1):9-13. 被引量:69
  • 4.[A]..[C].,.9-13,1998,9-13,.
  • 5.[A].施雅风.[C].,.9-13,1998,9-13,.
  • 6Braithwaite R J, Olesen O B. Ice ablation in West Greenland in relation to air temperature and global radiation . Z. Gletscherkd. Glaziageol., 1985, 20: 155-168.
  • 7Braithwaite R J, Olesen O B. Calculation of glacier ablation from air temperature, West Greenland . Oerleamns, J. Glacier Fluctuations and Climatic Change . New York: Kluwer Academic Publishers, 1989. 219-233.
  • 8Braithwaite R J. Positive degree-day factor for ablation on the Greenland ice sheet studied by energy-balance modeling . J. Glaciology, 1995, 41(137): 153-160.
  • 9Johannesson T, Sigurdsson O, Laumann T, et al . Degree-day glacier mass-balance modeling with applications to glaciers in Iceland, Norway and Greenland . J. Glaciology, 1995, 41(151): 559-567.
  • 10Liu Shiyin, Xie Zichu, Song Guoping, et al . Mass balance of Kangwure (flat-top) Glacier on the north side of Mt. Xixiabangma, China . Bulletin of Glacier Research, 1996, 14: 37-43.

二级参考文献55

  • 1竺可桢.中国近五千年来气候变迁的初步研究[J].考古学报,1972(1):15-38. 被引量:1257
  • 2林学椿,于淑秋,唐国利.中国近百年温度序列[J].大气科学,1995,19(5):525-534. 被引量:273
  • 3[9]Thompson D W J, Wallace J M. Structure of the Arctic and Antarctic Oscillations [A]. Proceedings of the 23rdAnnual Climate Diagnostics and Prediction Workshop[C]. Florida, USA: NOAA, NWS, Department of Commerce, 1998. 281-284.
  • 4[10]Thompson D W J, Wallace J M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields [J]. Geophysical Res. Lett., 1998, 25: 1 297-1 300.
  • 5[2]Shi Yafeng. Glaciers and Their Environments in China--the Present, Past and Future [M]. Beijing: Science Press, 2000. 23-24. [施雅风. 中国冰川与环境[M]. 北京: 科学出版社, 2000. 23-24.]
  • 6[14]Yoshihiro Matsuda, Akiko Sakai, Koji Fujita, et al. Glaciological observations on July 1st Glacier in Qilian Mountains of West China during summer 2002 [J]. Bulletin of Glaciological Research, 2004,(21): 31-36.
  • 7寇有观 张永亮.托木尔峰地区的辐射平衡及水汽输送[A]..天山托木尔峰地区的冰川与气象[C].乌鲁木齐: 新疆人民出版社,1985.120-137.
  • 8曾群柱 寇有观.绒布冰川消融期的热量平衡[A]..珠穆朗玛地区科学考察报告(1966-1968),现代冰川与地貌[C].北京: 科学出版社,1975.70-74.
  • 9白重瑗 张金华.巴托拉冰川辐射和热量平衡的某些特征[A]..喀喇昆仑山巴托拉冰川考察与研究[C].北京: 科学出版社,1980.57-81.
  • 10Iwata S, Aoki T, Kadota T, et al. Morphological evolution of the debris cover on Khumbu Glacier, Nepal, between 1978 and 1995 [A]. Debris-covered Glaciers, IAHS Publication No.264 [C]. Wallingford: IAHS Press, 2000.53-61.

共引文献1253

同被引文献441

引证文献34

二级引证文献261

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部