期刊文献+

过程挖掘在基于实例的机器人编程中的应用 被引量:1

Application of Process Mining in Instance-based Robot Programming
下载PDF
导出
摘要 将数据挖掘和工作流重建的思想引入机器人智能学习领域,提出用一阶、二阶马尔可夫方法解决机器人动作序列分析和过程建模问题.通过仿真机器人的实验,证明从某个机器人抽取出来的过程模型不但能很好地在其它机器人上重现,而且通过适当改进可以达到更好的控制效果. The ideas of data mining and work flow reconstruction are introduced into intelligent learning of robots. A way to use the first-order and second-order Markovian methods to solve the problems of analyzing the action sequence of robot and process modeling is presented. After experimenting with simu-robot, the process model extracted from one robot can be not only reconstructed in another robot but improved to get a better control performance.
作者 陈文 蒋平
出处 《机器人》 EI CSCD 北大核心 2005年第4期330-335,共6页 Robot
基金 国家自然科学基金资助项目(60175028)
关键词 过程挖掘 动作序列 实例学习 过程模型 process mining action sequence instance-based learning process model
  • 相关文献

参考文献9

  • 1Herbst J, Karagiannis D. Integrating machine learning and workflow management to support acquisition and adaptation of workflow models[J]. International Journal of Intelligent Systems in Accounting Finance and Management , 2000, 9(2): 67 -92.
  • 2Cook J, Wolf A. Discovering models of software processes from eventbased data [ J ]. ACM Transactions on Software Engineering and Methodology, 1998, 7(3): 215 -249.
  • 3Cook J, Wolf A. Event-based detection of concurrency [ A ]. Proccedings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering[C]. USA: ACM, 1998. 35 -45.
  • 4Agrawal R, Gunopulos D, Legmann F. Mining process models from workflow logs[ A ]. Proceedings of the 6th International Conference on Extending Database Technology[C]. Berlin, Germany: SpringerVerlag, 1998. 469-483.
  • 5Herbst J. A machine learning approach to workflow management[A]. Proceedings of the 11th European Conference on Machine Learning[ C ]. Berlin, Germany: Springer-Verlag, 2000. 183 -194.
  • 6Herbst J, Karagiannis D. An inductive approach to the approach to the acquisition and adaptation of workflow models[ A]. Prcceeding of the International Joint Conference on Artificial Intelligencc Workshop -Intelligent Workflow and Process Management[ C]. 1999. 52 -57.
  • 7Maruster L, Weijters A J M M, van der Aalst W M P. Process mining: disoovering direct successcrs in prooess logs[ A]. Prcceedings of the 5th International Conference on Discovery Sciencc [ C ]. Berlin,Germany: Springer-Verlag, 2002. 364-373.
  • 8Weijters T, Van der Aalst W M P. Redisoovering workflow models from event-based data [ A ]. Prcceeding of the 11 th Dutch-Belgian Conference on Machine Learning[ C]. Benelearm: 2001. 93 -100.
  • 9Yamada S. Recognizing environment from action sequences using self-organizing maps[J]. Applied Soft Computing, 2004, 4(1): 35-47.

同被引文献48

  • 1陈亮,高建民,陈富民,陈琨,李成.基于工作流挖掘的质量管理过程改进研究[J].计算机集成制造系统,2006,12(4):603-608. 被引量:8
  • 2赵静,赵卫东.基于工作流日志挖掘的流程角色识别[J].计算机集成制造系统,2006,12(11):1916-1920. 被引量:6
  • 3赵卫东,赵静.基于知识流的流程角色协作[J].计算机集成制造系统,2007,13(3):508-512. 被引量:5
  • 4COOK J E, WOLF A L. Discovering models of software process from event based data[J]. ACM Transactions on Software Engineering and Methodology,1998,7(3) :215 -249.
  • 5THAYER R H,DORFMAN M. Tutorial:system and software requirements engineering[M]. Los Alamitos, Cal. , USA: IEEE Computer Society Press, 1990.
  • 6AGRAWAL R,GUNOPULOS D, LEYMANN F. Mining process models from workflow logs[C]//Proceedings of the 6th Interna tional Conference on Extending Database TechnoLogy : Advances in Database Technology. London, UK: Springe-Verlag, 1998: 469- 483.
  • 7VAN DER AALST W M P,WEIJTERS A J M M. Process mining:a research agenda[J].Computers in Industry, 2004,53 (3): 231-244.
  • 8GRECO G,GUZZO A, MANCO G. Mining and reasoning on workflows[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17 (4) :519-534.
  • 9ROZINAT A,VAN DER AALST W M P. Conformance testing:measuring the fit and appropriateness of event logs and process models[C]//Proceedings of the 1st International Workshop on Business Process Intelligence. Berlin, Germany: Springer, 2005 : 1- 12.
  • 10VAN DER AALST W M P,JABLONSKI S. Dealing with work flow change:identification of issues and solutions[J]. International Journal of Computer Systems, Science, and Engineering, 2000, 15 (5):267-276.

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部