期刊文献+

移动机器人的概率定位方法研究进展 被引量:15

Progress of Probabilistic Localization Methods in Mobile Robots
下载PDF
导出
摘要 综述了近几年来流行的移动机器人基于概率定位的各种方法,对它们的性能进行了分析比较,所有这些方法都应用贝叶斯规则作为理论基础.首先,介绍了位置跟踪广泛应用的卡尔曼滤波方法和在全局定位方面取得一定成功的马尔可夫定位方法.然后,介绍了计算效率更高的粒子滤波定位方法,即蒙特卡洛法,以及最近自适应采样的粒子滤波方法,它比简单的粒子滤波效率更高.最后,对概率定位方法的关键技术进行了分析,并探讨了未来的发展趋势. This paper overviews some popular mobile robot probabilistic localization methods in recent years, analyzes and compares the performances of these methods. All of these methods employ the Bayesian rule as a fundamental theory. Firstly, we introduce the Kalman filter which is extensively used in position tracking, and the Markov localization method which has made many successes in global localization. Secondly, the Monte Carlo method is presented, which uses a particle filter technique and are more efficient computationally. The most recently used adaptive sampling methods are also introduced, and they have demonstrated much better results than the simple particle filter approaches. At last, the key technologies of probabilistic localization methods are analyzed, and the trends of research in the future are discussed.
出处 《机器人》 EI CSCD 北大核心 2005年第4期380-384,共5页 Robot
基金 国家863计划资助项目(2002AA735041)
关键词 移动机器人 概率定位 贝叶斯规则 卡尔曼滤波 马尔可夫定位 粒子滤波 mobile robot probabilistic localization Bayesian rule Kalman filter Markov localization particle filter
  • 相关文献

参考文献13

  • 1Cox I, Wilfong G. Autonomous Robot Vehicle [ M]. London:Springer-Verlag, 1990. 167 - 193.
  • 2Roumeliotis S I, Bekey G A. Bayesian estimation and Kalman filtering: a unified framework for mobile robot localization [A]. Proceedings of the IEEE Ir ternational Conference on Robotics and Automation[C]. USA: IEEE, 2000. 2985 -2992.
  • 3Fox D, Burgard W, Thrun S. Markov localization for mobile robots in dynamic environments [ J ]. Journal of Artificial Intelligence Research, 1999, 11(3): 391 -427.
  • 4Thrun S, Fox D, Burgard W. Probabilistic algorithms and the interactive museum tour-guide robot Minerva [ J ]. The International Journal of Robotics Research, 2000, 19(11): 972-999.
  • 5Thrun S, Fox D, Burgard W, et al. Robust Monte Carlo localization for mobile robots [J]. Artificial Intelligence, 2001, 128(1 -2): 99- 141.
  • 6Rudy N. Robot Localization and Kalman Filters [ D ]. Dutch: Utrecht University, 2003.
  • 7Fox D. Adapting the sample size in particle filters through KLD-sampling [J]. The International Journal of Robotic Research, 2003, 22(12): 985 -1004.
  • 8Sorenson A, Alspach D. Recursive Bayesian estimation using Gaussian sums [J]. Automatic a, 1971,7(2): 465 -479.
  • 9Jensfelt P. Approaches to Mobile Robot localization in Indoor Environments[ D ]. Sweden: Royal Institute of Technology, 2001.
  • 10Fox D. Markov Localization: a Probabilistic Framework for Mobile Robot Localization and Navigation [ D ]. Germany: University of Bonn, 1998.

同被引文献116

引证文献15

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部