期刊文献+

基于突变理论的扁拱跳跃屈曲分析 被引量:2

Snap-through buckling analysis of shallow arches based on catastrophe theory
下载PDF
导出
摘要 分析了扁拱在静载荷或动载荷作用下发生跳跃屈曲的原因。采用尖点突变理论建立悬链线形拱的跳跃屈曲模型,推导临界荷载公式,并采用Matlab工具计算及Ansys验算模型理论正确性,最后对上述两种方法所得值进行比较。 Shallow arch will happen snap-through buckling under the dead load or live load because of the elastic compression of the arch axis. In this paper, firstly build the snap-through buckling model of the catenary and the parabola arch, derivate the critical load equation. Getting the critical load by Matlab program and validating the model theory with Ansys, finally compare the values gotten by the above ways.
出处 《山西建筑》 2005年第14期51-52,共2页 Shanxi Architecture
关键词 扁拱 跳跃屈曲 尖点突变 临界荷载 shallow arches, snap-through buckling, cusp catastrophe, critical buckling
  • 相关文献

参考文献1

  • 1[英]桑博德.凌复华译.突变理论入门[M].上海:上海科学技术文献出版社,1983.71-83.

共引文献1

同被引文献19

  • 1陈浩军,杨润生.扁拱平面内失稳的突变模型分析[J].交通科学与工程,1991,22(4):83-88. 被引量:3
  • 2陈浩军,汪优,黄靓.拱结构屈曲的几何非线性有限元分析[J].广东工业大学学报,2004,21(4):47-51. 被引量:4
  • 3程鹏,童根树.圆弧拱平面内弯曲失稳一般理论[J].工程力学,2005,22(1):93-101. 被引量:28
  • 4卫星,李俊,李小珍,强士中.考虑二阶效应的拱结构面内弹性屈曲[J].工程力学,2007,24(1):147-152. 被引量:16
  • 5Gjelsvik A,Bodner S R. Energy criterion and snap-though buckling of arches [ J ]. Journal of the Engineering Mechanics Division, 1962,88(5) : 87-134.
  • 6Schreyer H L, Masur E F. Buckling of shallow arches [ J 1. Journal of the Engineering Mechanics Division, 1966,92 (4) : 1 - 17.
  • 7Dickie J F, Broughton P. Stability criteria for shallow arches [ J 1. Journal of the Engineering Mechanics Division, 1971,97 ( 3 ) : 951 - 965.
  • 8Pi Yonglin,Trahair N S. Non-linear buckling and post buckling of elastic arches [ J]. Engineering Structures, 1998,20(7 ) : 571-579.
  • 9Jiho M, Ki-Yong Yoon, Tae-Hyung Lee. In-plane elastic buckling of pin-end shallow parabolic aches [ J]. Engineering Structures,2007, 29(10) : 2611-2617.
  • 10Pi Yonglin, Bradford M A, Tin-Loi F. Nonlinear analysis and buck- ling of elastically supported circular sh:low arches [ J ]. Interna- tional Journal of Solids and Structures, 2007,44 ( 7/8 ) : 2401- 2425.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部