摘要
我们称群G为k-N群,如果G的第k次导群G^(k)是幂零群。我们证明了所有的有限k-N群的全体构成一个饱和群系,并证明了{F(p)}是局部定义k-N群的完整且集中的群系组,其中每个F(p)={L|L^(k)∈P},进一步得出了k-N群的一些性质与判别方法。
A group G is called k-N group if G(k) is nilpotent. It is proved that all k-N groups form a saturated formation and that the unique full and integrated local definition way of k-N group is {F(p)}, where F(p) = {L| L(k)∈P}. As a result, some criterions on k-N group have been obtained.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
1989年第4期86-89,共4页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
K-N群
有限群
局部定义
饱和群系
k-N group
saturated formation
local definition formation