期刊文献+

基于第二代小波的超谱遥感图像融合算法研究 被引量:12

Research on Fusion of Hyperspectral Remote Sensing Image Based on Second Generation Wavelet
原文传递
导出
摘要 超谱遥感图像包含了大量的波段,波段之间的相关性较高,采用信息融合技术可以降低超谱图像的分析难度。提出了一种结构新颖的第二代小波加权融合算法。首先将图像分解为两个序列,用2阶Neville滤波器构造预测和更新算子,对两个序列以矩形栅格和梅花形栅格的格式进行交替预测和更新;再以各个波段的方差作为融合的特征,进行特征级第二代小波加权融合,最后对图像进行第二代小波重构。为了验证新方法的有效性,采用机载可见光红外成像光谱仪超谱遥感图像进行仿真,并与典型融合方法主成分分析和离散小波变换的融合效果相比较。实验结果表明提出的第二代小波加权融合算法能够很好地保持图像的空间特性和光谱特性,其熵值高于主成分分析融合结果0.1949,高于离散小波变换融合结果0.7998。 There are hundreds of bands in hyperspectral remote sensing image and the bands are highly correlative, and the difficulty of analysis can be reduced by using fusion technology. A novel structure of second generation wavelet weighting fusion algorithm is proposed. Firstly, image is decomposed into two serials, which are predicted and updated by two-order Neville filter on rectangle and quincunx grid by turns. Secondly, feature level second generation wavelet fusion is carried on the updated serial by using the variance of each band as the feature of fusion. Finally the image is reconstructed by reverse second generation wavelet. In order to test the effect of the new method, hyperspectral remote sensing image of airborne visible and infrared imaging spectrometer is simulated on Pentium IV computer. Compared with typical fusion method such as principal component analysis and discrete wavelet transform, the result of the experiment shows that the proposed method can retain spatial and spectral feature, the entropy is bigger than principal component analysis 0.1949, and bigger than discrete wavelet transform 0.7998.
出处 《光学学报》 EI CAS CSCD 北大核心 2005年第7期891-896,共6页 Acta Optica Sinica
基金 哈尔滨学科后备带头人基金(2004AFXXJ) 哈尔滨工程大学基础科学研究基金(HEUF04098)资助课题
关键词 遥感 图像加权融合 第二代小波 Neville滤波器 Entropy Image processing Principal component analysis Remote sensing Signal filtering and prediction Wavelet transforms
  • 相关文献

参考文献19

  • 1Terry A.Wilson.Steven K.Rogers. Matthew Kabrisky.Perceptual-based image fusion for hyperspectral data[J].IEEE Transactions on Geoscience and Remote Sensing.1997.35(4):1007-1017.
  • 2蒋青松,王建宇.实用型模块化成像光谱仪多光谱图像的信噪比估算及压缩方法研究[J].光学学报,2003,23(11):1335-1340. 被引量:22
  • 3肖立峰,胡鸿璋,张梅,耿凡.一种基于集成光学声光可调谐滤波器的近红外光谱仪[J].中国激光,2004,31(3):269-272. 被引量:7
  • 4Lori Mann Bruce. Cliff H. Koger, Jiang Li. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction[J]. IEEE Trausactions on Geoscience and Remote Sensing, 2002, 40(10) : 2331-2338.
  • 5Susan M. Schweizer, Jose M. F Moura. Efficient detection in hyperspeetral imagery [J]. IEEE Transactions on Image Processing, 2001, 10(4): 584-597.
  • 6Zhong Zhang, Rick S. Blum. A categorization of muhiscale-decomposition based image fusion schemes with a performance study for a digital camera application[J]. Proc. IEEE, 1999, 87(8): 1315-1326.
  • 7S. Das, W. K. Krebs. Sensor fusion of multispectral imagery[J]. Electron. Lett., 2000, 36(13): 1115-1116.
  • 8Mahta Moghaddam, Jennifer L. Dungan, Steven Acker. Forest variable estimation from fusion of SAR and multispectral optical data[J]. IEEE Transactions on Geoscience and Remote .Sensing ,2002, 40(10): 2176-2187.
  • 9Alexander Toet, Eric M. Franken. Perceptual evalualion of different image fusion schemes[J]. Displays, 2003, 24( 1): 25-37.
  • 10Zhang Ye, ZhangJunping. Wavelet-based fusion classification for hyperspectral images [J]. Chin. J. Electron. , 2002, 11 ( 4 ) :515-518.

二级参考文献37

  • 1胡学龙 姜楠 郭振民.数字化医院的图像存档与通信系统(PACS)[J].工程图学学报,2001,.
  • 21,S Mallat. A theory for multiresolution signal decomposition:The wavel et representation. IEEE Trans. Pattern Anal. Mach. Intel.,1989,11(7):674~693.
  • 32,A Marc, B Michel. Image coding using wavelet transfrom. IEEE Trans. Img. Proc ., 1992,1(2):205~220.
  • 43,I Daubechies.Orthogonal bases of compactly supported wavelets.Comm. Pure Appl. Mathi, 1988,41(5):909~996.
  • 54,I Daubechies, W Sweldens. Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl., 1994,4(3):247~269.
  • 65,R Calderbank, I Daubechies. Wavelet transforms that map inte-gers t o integers. Applied and Computation Harmonic Analysis, 1998,5(3):332~367.
  • 76,W Sweldens.Lossless image compression using integer to integerwavelet tra ns forms. International conference on image processing, 1997,1(1):596~599.
  • 8M. Huhne, U, Eschenauer, H. W. Siesler. Performance and selected applications of an acousto optic tunable filter nearinfrared spectrometer [J]. Applied Spectroscopy, 1995, 49(2):177-180.
  • 9A. Norman Mortensen, Stephen A. Dyer, Robert M.Hammaker et al.. A hadamard-multiplexed spectrometer based on an acousto optic tunable filter [J]. IEEE Transaction on Instrumentation and Measurement, 1996, 45(2):394-398.
  • 10David P. Baldwin, Daniel S. Zamzow, Apthur P. D' Silva.High-resolution spectroscopy using an acousto-optic tunable filter and a fiber optic Fabry-Perot interferometer [J]. Applied Spectroscopy, 1996, 50(4):498-503.

共引文献71

同被引文献110

引证文献12

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部