期刊文献+

基于时间序列与多部图的演化聚类动态分析 被引量:1

Morphing Cluster Dynamics Analysis Based on Time Series and Multipartite Graph
下载PDF
导出
摘要 提出演化聚类动态分析法,使用图论理论,将时间序列数据集通过聚类分析表示为一个多部图。该图实现了对时间序列之间的群体级和个体级动态交互行为的捕捉和建模,不但能够追踪各个时间序列的来龙去脉,而且能对捕获的交互行为加以利用。 A new time series analysis algorithm named morphing cluster dynamics analysis is put forward. It reduces the time series set into amultipartite graph called system morphing graph. With this graph, the time series interactions on both levels are modeled and represented.
出处 《计算机工程》 CAS CSCD 北大核心 2005年第14期156-158,共3页 Computer Engineering
关键词 聚类分析 时间序列 多部图 交互行为 Cluster analysis Time series Multipartite graph Interaction behavior
  • 相关文献

参考文献5

  • 1Keogh E, Lin J, Truppel W. Clustering of Time Series Subsequences is Meaningless: Implications for Previous and Future Research. ICDM 2003, IEEE,2003
  • 2Ramoni M, Sebastiani P, Cohen P. Bayesian Clustering by Dynamics. Machine Learning. Kluwer Academic Publisher, Boston,2001:1-31
  • 3Oates T, Firoiu L, Cohen P. Clustering Time Series with Hidden Markov Models and Dynamic Time Warping. IJCAI-99 Workshop on Sequence Learning, 1999: 17-21
  • 4Diestel R. Graph Theory (2nd Ed.). New York: Springer-Verlag, 2000: 23
  • 5Hochheiser H, Shneiderman B. TimeSearcher: Visual Exploration of Time-Series Data. http://www.cs.umd.edu/hcil/timesearcher, 2004

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部