期刊文献+

双核镍(Ⅱ)配合物的合成、晶体结构和磁性质 被引量:3

Synthesis, Crystal Structure and Magnetic Properties of Dinuclear Nickel(Ⅱ) Complex
下载PDF
导出
摘要 合成了通过N-N键桥联的不对称的N2O3席夫碱配体(H3L)的镍髤配合物[Ni2(HL)2]2(DMF)8(H2O)2(1)。配合物晶体属于三斜晶系,空间群为P1,a=1.2735(2)nm,b=1.3604(3)nm,c=1.4276(3)nm,α=85.358(4)°,β=63.513(3)°,γ=79.545(4)°,V=2.1768(7)nm3,Z=1,F(000)=980,R1=0.0736。配合物1的不对称单元中含有两个双核结构Ni2(HL)2(DMF)2(H2O)2(Ⅰ)和Ni2(HL)2(DMF)4(Ⅱ)以及两个DMF溶剂分子。通过酚基氧原子桥联的镍-镍距离分别为:Ni(1)-Ni(1A),0.3084nm;Ni(2)-Ni(2B),0.3103nm(对称操作:A:1-x,2-y,-z;B:1-x,1-y,1-z)。金属镍髤离子采取扭曲的八面体配位构型,一个配体的NO2三齿配位单元和另一个配体的酚基氧原子位于赤道面位置,两个溶剂分子占据轴向位置。晶体中存在着分子内以及分子与溶剂分子间的两种氢键作用。配合物1的变温磁化率测定表明,Ni髤离子之间的反铁磁耦合作用在它的磁性质中起主导作用。 Asymmetrical pentadentate Schiff-base ligand H3L with two coordination compartments linked by a single N-N bridge and its nickel(Ⅱ) complex [Ni2(HL)2]2(DMF)8(H2O)2 (1) have been synthesized. Crystal data: triclinic, space group P1, a=1.273 5(2) nm, b=1.360 4(3) nm, c=1.427 6(3) nm, α=85.358(4)°, β=63.513(3)°, γ=79.545(4)°, V=2.176 8(7) nm3, Z=1, F(000)=980, R1=0.073 6 for 5 475 observed reflections [I≥2σ(I)]. An asymmetric unit of complex 1 comprises two binuclear structures Ni2(HL)2(DMF)2(H2O)2 (Ⅰ) and Ni2(HL)2(DMF)4 (Ⅱ) and two DMF solvent molecules. The separations of phenol oxygen bridged nickel(Ⅱ) centers Ni(1)-Ni(1A) and Ni(2)-Ni(2B) are 0.308 4 and 0.310 3 nm, respectively (symmetry code: A: 1-x, 2-y, -z; B: 1-x, 1-y, 1-z). The metal centers in the distorted octahedral geometries were coordinated by a NO2 tridentate moiety from one ligand, a phenyl oxygen atom from another ligand and two oxygen atoms of different solvent molecules. There are two type hydrogen bonds in the crystal. The magnetic behavior of complex 1 indicates that the antiferromagnetic exchange coupling between Ni(Ⅱ) ions dominates the magnetic properties of the complex. CCDC: 273546.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2005年第8期1155-1159,共5页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金资助项目(No.20131020) 教育部科学技术重点项目资助。
关键词 席夫碱 镍(Ⅱ)配合物 晶体结构 磁性质 Schiff-base nickel(Ⅱ) complex crystal structure magnetic properties
  • 相关文献

参考文献18

  • 1(a)Arnold P L, Blake A J, Wilson C, et al. Inorg. Chem., 2004,43:8206-8208(b)Childs L J, Alcock N W, Hannon M J. A ngew. Chem., Int.Ed., 2001,40:1079-1081
  • 2Gao E Q, Yue Y F, Bai S Q, et al. J. A m. Chem. Soc., 2004,126:1419-1429
  • 3(a)Hannon M J, Painting C L, Alcock N W. Chem. Commun.,1999:2023-2024(b)Hannon M J, Bunce S, Clarke A J, et al. A ngew. Chem.,Int. Ed., 1999,38:1277-1278
  • 4(a)Belokon Y N, North M, Maleev V, et al. Angew. Chem. Int.Ed., 2004,43:4085-4089(b)Hamacek J, Blanc S, Elhabiri M, et al. J. A m. Chem. Soc.,2003,125:1541-1550(c)Childs L J, Alcock N W, Hannon M J. A ngew. Chem, Int.Ed., 2002,41:4244-4247
  • 5Albrecht M. Chem. Rev., 2001,101:3457-3498
  • 6(a)Koizum S, Nihei M, Nakano M, et al. Inorg. Chem., 2005,44:1208-1210(b)Lin S, Liu S X, Zhong C, et al. Inorg. Chem., 2004,43:2222-2224(c)Liu S X, Lin S, Lin B Z, et al. Angew. Chem., Int. Ed., 2001,40:1084-1087
  • 7(a)Biradha K, Aoyagi M, Fujita M. J. Am. Chem. Soc., 2000,122:2397-2398(b)Aoyagi M, Biradha K, Fujita M. J. Am. Chem. Soc., 1999,121:7457-7458(c)Fujita M. Acc. Chem. Res., 1999,32:53-61 and references therein
  • 8(a)Yu S Y, Kusukawa T, Biradha K, et al. J. Am. Chem. Soc.,2000,122:2665-2666(b)Fujita M, Fujita N, Ogura K, et al. Nature, 1999,400:52-55(c)Fujita M, Yu S Y, Kusukawa T, et al. Angew. Chem., Int.Ed., 1998,37:2082-2085
  • 9(a)Jiang Y B, Kou H Z, Wang R J, et al. Inorg. Chem., 2005,44:709-715(b)Mukherjee P S, Konar S, Zangrando E, et al. Inorg. Chem.,2003,42:2695-2703
  • 10(a)Seidel S R, Stang P J. Acc. Chem. Res., 2002,35:972-983(b)Wurthner F, Sautter A, Schmid D G, et al. Chem. Eur. J.,2001,7:894-902(c)Benkstein K D, Hupp J T, Stem C L. Angew. Chem., Int.Ed., 2000,39:2891-2893

同被引文献22

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部