期刊文献+

非拘限含水层之水力传导系数模糊特性 被引量:1

Fuzzy property of hydraulic conductivity in unconfined aquifer
下载PDF
导出
摘要 地下水流于非拘限含水层流动时,因含水层之非均质性,使得垂直平均之饱和水力传导系数随地下水水位高低而变化。本研究就屏东平原之水文变量及边界条件等已知资料,利用MODFLOW模式计算屏东平原之地下水水位与水力传导系数之相关性。并运用模糊理论之模糊集与归属函数,分析水力传导系数在指数函数变换下,其所具有之模糊归属函数分布特性。由分析可知,屏东平原各地下水位观测站井之水力传导系数随地下水位变化具模糊关系。因此,在进行现地地下水流数值模拟时,水力传导系数不能只假设为单一值。 While groundwater flows through an unconfined aquifer due to heterogeneity, the vertical average saturated hydraulic conductivity is a function of hydraulic head. In this study, the MODFLOW model was used to calculate the relation between hydraulic head and hydraulic conductivity in Pingtung Plain. The hydraulic conductivity was transformed with exponential function to examine the distribution properties of fuzzy function. The result shows that the variation of hydraulic conductivity with the changes of groundwater head in observation wells in Pingtung Plain is of fuzzy properties. This analysis indicated that the hydraulic conductivity could not be assumed as a constant value when groundwater flow was simulated with numerical model.
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2005年第7期763-767,共5页 Chinese Journal of Geotechnical Engineering
关键词 非拘限含水层 水力传导系数 模糊理论 归属函数 unconfined aquifer hydraulic conductivity fuzzy theory membership function
  • 相关文献

参考文献8

  • 1Gelhar L W. Stochastic subsurface hydrology [M]. New Jersery:Prentice- hall Inc, 1993.
  • 2Law J. A statistical approach to the interstitial heterogeneity of sand reservoirs [J]. Trans AIME, 1944, 155:202-222.
  • 3Bennion D W, Griffiths J C. A stochastic model for predicting variations in reservoir rock properties [J]. Trans AIME,1966,237(2):9- 12.
  • 4Sudicky E A. A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process [J]. Water Resource Research, 1986, 22:2069 - 2082.
  • 5曹以松 谭义绩.地下水模型应用于多层受压含水层之研究[J].台湾水利,1979,27(3):1-25.
  • 6施孙富.均质水层之非均匀性与地下水流动不定性之研究[J].台湾水利,1979,27(1):1-17.
  • 7McDonald M G, Harbaugh A W. A Modular three-dimensional finite-difference groundwater flow model [R]. Washington D C Scientific Software Group, 1988.
  • 8Zimmermann H J. Fuzzy set theory - and its applications[M].Kluwer Academic Publishers, 2001.

同被引文献5

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部