期刊文献+

容忍噪音的扩张矩阵启发式算法研究

A Noise-Tolerant Heuristic Algorithm for Extension Matrix
下载PDF
导出
摘要 现有扩张矩阵算法多为建立在理想数据基础上的,而实际的应用领域中不可避免地存在噪音数据,这样致使其在实际的应用中很难得到令人满意的结果。文章对原有扩张矩阵理论进行扩充,提出扩张矩阵集的概念,并在此基础上给出了一个容忍噪音的扩张矩阵启发式算法(NCV)。实际领域的实验结果表明:NCV算法能够得到较为简单而精确的规则,并且较好地解决了实际领域中存在的噪音问题。 Extension Matrix is constructed from noise-free datasets.However it is inevitable noises exist in the real-world applications,which make it not be able to obtain better results for the algorithms based on Extension Matrix.This paper proposes a Generalized Extension Matrix,which is the extension of Extension Matrix.A new heuristic algorithm based on Generalized Extension Matrix,NCV is also given.The empirical results show that NCV can obtain simpler and more precise rules and handle noises in the real-world datasets effectively.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第20期25-28,55,共5页 Computer Engineering and Applications
基金 国家自然科学基金项目资助课题(编号:60303028) 浙江省"高校青年教师资助计划"基金资助
关键词 扩张矩阵 归纳学习 噪音 extension matrix,inductive learning,noise
  • 相关文献

参考文献10

  • 1Hong J R.AE1 :Extension matrix approximate method for the general covering problem[J].International Journal of Computer & Information Science, 1985; 14(6) :421~437
  • 2Xindong Wu. Inductive learning:algorithms and frontiers[J].Artificial Intelligence Review,1993; (7) :93~108
  • 3Quinlan J R.C4.5:Programs for machine learning[M].San Mateo,USA: Morgan Kaufmann, 1993
  • 4Utgoff P E,Berkman N C,Clouse J A.Decision tree induction based on efficient tree restructuring[J].Machine Learning, 1997; 29 ( 1 ): 5~44
  • 5Guido Cervone,Liviu Panait,Ryszard S Michalski.The Development of the AQ20 Learning System and Initial Experiments[J].Intelligent Information Systems,2001:13~29
  • 6Wu XD.Rule induction with extension matrices[J].Journal of the American Society for Information Science, 1998; 49 (5) :435~454
  • 7钱国良,舒文豪,王亚东.基于信息熵的扩张矩阵的启发式算法[J].计算机学报,1998,21(7):619-626. 被引量:2
  • 8谌卫军,林福宗,李建民,张钹.基于扩张矩阵理论的汉语韵律短语分析[J].计算机学报,2003,26(1):26-31. 被引量:2
  • 9Kargupta H,Park B H.A Fourier spectrum-based approach to represent decision trees for mining data streams in mobile environments[J].IEEE Transactions on Knowledge and Data Engineering,2004;16(2) :216~229
  • 10U M Fayyad,K B Irani. On the handling of continuous-valued attributes in decision tree generation[J].Machine Learning,1992;8:87~102

二级参考文献17

  • 1[1]Bachenko J, Fitzpatrick E A. Computational grammar of discourse-neutral prosodic phrasing in English. Computational Linguistics, 1990, 16(3):155~170
  • 2[2]Quene H, Kager R. The derivation of prosody for text tospeech from prosodic sentence structure. Computer Speech and Language, 1992, 6(1): 77~98
  • 3[3]Taylor P, Black A W. Assigning phrase breaks from part-ofspeech sequences. Computer Speech and Language, 1998, 12(2):99~117
  • 4[4]Muller A F, Zimmermann H G, Neuneier R. Robust generation of symbolic prosody by a neural classifier based on autoas sociators. In: Proceedings of ICASSP, Istanbul, Turkey,2000. 1285~ 1288
  • 5[5]Wang M, Hirschberg J. Automatic classification of intonational phrase boundaries. Computer Speech and Language, 1992, 6(2): 175~196
  • 6[6]Hirschberg J, Prieto P. Training intonational phrasing rules automatically for English and Spanish text to speech. Speech Communication, 1996, 18(3): 281~290
  • 7[7]Lee S, Oh Y H. Tree hased modeling of prosodic phrasing and segmental duration for Korean TTS systems. Speech Commu nication, 1999, 28(4): 283~300
  • 8[8]Fordyce C, Ostendorf M. Prosody prediction for speech synthesis using transformational rule-based learning. In: Proceedings of ICSLP, Sydney, Australia, 1998. 843~846
  • 9[9]Chen W J, Lin F Z, Li J M, Zhang B. Training prosodic phrasing rules for Chinese TTS systems. In: Proceedings of Eurospeech, Scandinavia, 2001. 1159~1162
  • 10[10].Hong J R. AE1: An extension matrix approximate method for the general covering problem. International Journal of Comput er and Information Science, 1985, 14(6): 421~437

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部