期刊文献+

基于主元神经网络和SVM的入侵特征抽取和检测 被引量:1

Principal Component Neural Networks Feature Extraction with SVM for Anomaly Detection
下载PDF
导出
摘要 目前基于机器学习的入侵检测研究都是从提高检测精度的分类器算法设计出发,大多未考虑对样本特征的分析。文章提出了一种基于特征抽取的异常检测方法,应用主元神经网络(PCNN)抽取入侵特征,再应用SVM检测入侵。采用广义Hebb学习规则训练线性主元神经网络,SVM采用基于网格粒度搜索获得最优参数。利用KDD99数据集,将线性PCNN-SVM与SVM进行比较,结果显示在不降低分类器性能的情况下,PCNN特征抽取方法能对输入数据有效降维。 Very little work on feature extraction has been taken in the field of network anomaly detection.This paper proposes the application of principal component neural networks for intrusion feature extraction.The extracted features are employed by SVM for classification.The MIT's KDD Cup 99 dataset is used to evaluate the proposed method compared to SVM without application of feature extraction,which clearly demonstrates that PCNN-based feature extraction method can greatly reduce the dimension of input space without degrading or even boosting the classifiers' performance.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第20期145-147,共3页 Computer Engineering and Applications
基金 国家重点基础研究发展规划项目(编号:2002CB32200) 国家自然科学基金项目(编号:69974014)
关键词 异常检测 特征抽取 主元神经网络(PCNN) 支持向量机 anomaly detection,feature extraction,Principal Components Neural Networks,support vector machines
  • 相关文献

参考文献6

  • 1Yang Xiang-Rong,Shen Jun-Yi ,Wang Rui.Artificial immune theory based network intrusion detection system and the algorithms design[C].In:Proceedings of 2002 International Conference on Machine Learning and Cybernetics,2002:73~77
  • 2Andrew H.Sung. Identify important features for intrusion detection using support vector machines and neural networks [C].In:IEEE Proceedings of the 2003 Symposium on Application and the Internet,2003:209~217
  • 3Wang Yong, Yang Huihua, Wang Xingyu et al. Distributed Intrusion Detection System Based on Data Fusion Method[C ].In :The 5th World Congress on Intelligent Control and Automation. New Jersey, IEEE Press,2004: 4331~4334
  • 4V N Vapnik.The Nature of Statistical Learning Theory[M].New York:Springer, 1995
  • 5Simone Fiori,Francesco Piazza. A Comparison of Three PCA Neural Techniques [ C ] .In: ESANN'1999 proceedings-European Symposium on Artificial Neural Networks Bruges ( Belgium ), 1999: 275~280
  • 6KDD Cup 99 数据集.http ://kdd.ics.uci.edu/databases/kddcup99/task.html

同被引文献7

  • 1周荃,王崇骏,王珺,周新民,陈世福.基于人工智能技术的网络入侵检测的若干方法[J].计算机应用研究,2007,24(5):144-149. 被引量:33
  • 2Vladimir N. Vapnik. Statistical Learning The Nature of Theory[M]. New York: Springer, 1995.
  • 3Ian H. Witten& Eibe Frank. Data MiningPractical Machine Learning Tools And Techniques [M]. 2Nd Edition (2005). Elsevier, 2005.
  • 4Bernhard Schlkopf, Alexander J. Smola. Learning with Kernals: Support Vector Machines, Regularization, Optimization, and Beyond[M]. The MIT Press, 2001.12.
  • 5L.J.P. van der Maaten. An Introduction to Dimensionality Reduction Using Matlab[M]. MICC/IKAT, 2007.07.
  • 6http: //kdd. ics. uci.edu/databases/ kddcup99/kddcup99, html.
  • 7李辉,管晓宏,昝鑫,韩崇昭.基于支持向量机的网络入侵检测[J].计算机研究与发展,2003,40(6):799-807. 被引量:79

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部