期刊文献+

基于广义逆矩阵的有理Bézier曲线降多阶逼近 被引量:2

Approximation of multi-degree reduction of rational Bézier curves by the general inverse matrix
下载PDF
导出
摘要 文章利用有理Bézier曲线的齐次坐标表示,参考基于广义逆矩阵的多项式的降多阶逼近方法,给出了基于广义逆矩阵的有理Bézier曲线的降多阶逼近方法。在降阶过程中,分别考虑了不保端点插值和具有端点高阶插值条件的情形,并分别得到了降多阶后的有理Bézier曲线的控制顶点齐次坐标的计算公式。最后,给出数值实例,以显示所给方法的有效性。 Rational Bzier curves are the generation of polynomial Bzier curves. In this paper, an approach for multi-degree reduction of rational Bzier curves is presented, which is based on the coordinate expression of rational Bzier curves and the method of multi-degree reduction of polynomial Bzier curves by the general inverse matrix. The explicit formula of the homogeneous coordinates of the control points of the reduced rational Bzier curves is obtained. In the process of degree reduction, the case with higher order interpolation conditions of endpoints is considered. Finally, some numerical examples are presented to illustrate the effects of this method.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第7期824-828,共5页 Journal of Hefei University of Technology:Natural Science
关键词 有理BÉZIER曲线 升降 降多阶 端点插值 <Keyword>rational Bzier curve degree elevation multi-degree reduction endpoint interpolation
  • 相关文献

参考文献6

二级参考文献15

  • 1陈国栋,王国谨.Multi-degree reduction of tensor product Bézier surfaces with conditions of corners interpolations[J].Science in China(Series F),2002,45(1):51-58. 被引量:19
  • 2Hu Shimin, Sun Jiaguang, Jin Tongguang, et al. Approximate degree reduction of Bézier curves[J]. Tsinghua Science and Technology, 1998, 3(2): 997~1000
  • 3Bohem W, Farin G, Kahman J. A survey of curve and surfaces methods in CAGD[J]. Computer Aided Geometric Design, 1984, 1(1): 1~60
  • 4Barnhill R E. Surface in computer aided geometric design: A survey with new results[J]. Computer Aided Geometric Design, 1985, 2(1): 1~17
  • 5Danneberg L, Nowacki H. Approximate conversion of surface representations with polynomial bases[J]. Computer Aided Geometric Design, 1985, 2(2): 123~131
  • 6Hoschek J. Approximate conversion of spline curves[J]. Computer Aided Geometric Design, 1987, 4(1): 59~66
  • 7Lachance M A. Chebyshev economization for parametric surfaces[J]. Computer Aided Geometric Design, 1988, 5(3): 195~208
  • 8Eck M. Degree reduction of Bézier curves[J]. Computer Aided Geometric Design, 1993, 10(4): 237~251
  • 9Hu Shimin,Tsinghua Science and Technology,1998年,3卷,2期,997页
  • 10Bogacki P,Computer Aided Design,1995年,27卷,9期,651页

共引文献52

同被引文献12

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部