期刊文献+

求解度约束最小生成树问题的自适应遗传算法

An Adaptive Genetic Algorithm for the Degree-Constrained Minimum Spanning Tree Problem
下载PDF
导出
摘要 在遗传算法中一个关键问题是必须采取措施保持种群多样性,防止算法出现早熟收敛。本文提出了一种基于父个体相似度的自适应遗传算法,使用新的自适应遗传操作策略以保持种群多样性。将新算法用于求解图的度约束最小生成树问题,实验结果表明本方法到比不使用父个体相似度信息的普通遗传算法权值更低的度约束最小生成树。 In Genetic Algorithm, the key question is to reserve population's diversity by using some methods in order to prevent premature convergence. This paper proposes a new adaptive genetic algorithm based on parents' similarity(AGABPS). To keep population's diversity, it employs new adaptive genetic operation strategy which modifies crossover and mutation strategy of Simple Genetic Algorithm (SGA). We use this algorithm to construct degree-constrained minimum spanning tree(d-MST) of a graph. Our experimental results provide strong evidence that the genetic algorithm employing parents' similarity information to decide crossover or mutation finds significantly lower-cost solutions to random graph d-MST problems than rival method.
出处 《衡阳师范学院学报》 2005年第3期19-22,共4页 Journal of Hengyang Normal University
基金 湖南环境生物职业技术学院院长基金资助课题(Z0301)
关键词 相似度 最小生成树 度约束最小生成树 similarity degree Minimum Spanning Tree Degree-Constrained Minimum Spanning Tree
  • 相关文献

参考文献8

  • 1Graham R., P. Hell. On the history of the minimum spanning tree problem[J]. Annals of the History of Computing, 1985, 7:43-57.
  • 2G. R. Raidl. An efficient evolutionary algorithm for the degree-constrained minimum spanning tree problem[C].Proc. of the 2000 IEEE congress on evolutionary computation, IEEE Press, 2000 : 104-111.
  • 3Boldon B. ,Deo N. ,Kumar N.. Minimum-Weight degree constrained spanning tree problem, Heuristics and implementation on an SIMD parallel machine[R]. Tech Report CS-TR-95-02, University of Central Florida ,1995.
  • 4Knowles J. , D. Come. A new evolutionary approach to the degree constrained minimum spanning tree problem[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(2):125-134.
  • 5Raidl G. R. , Julstrom B. A.. Edge - sets: an Effective evolutionary coding of spanning trees[J]. IEEE transactions on evolutionary computation, 2003, 7(3): 225-239.
  • 6Narula S. , C. Ho. Degree-constrained minimum spanning tree[J]. Computers and operations research, 1980, 7:239-249.
  • 7Savelsbergh M.. Local search for routing problem with time windows[J]. Annals of operations research, 1985,4(23): 285-305.
  • 8Zhou G., M. Gen. A note on genetic algorithms for degree-constrained spanning tree problem[J]. Networks,1997,30: 91-95.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部