期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
高维运输问题及其解法
High Dimension Transportation Problem and Its Solution an External Electric Field
下载PDF
职称材料
导出
摘要
本文将通常的运输问题(Ⅰ)推广到高维情形(Ⅱ),并给出了求其最优解的表上作业法.
作者
吕瑞峰
机构地区
太原理工大学阳泉学院
出处
《晋中学院学报》
2005年第3期9-12,共4页
Journal of Jinzhong University
关键词
运输问题
表上作业法
位势
回路
分类号
O29 [理学—应用数学]
引文网络
相关文献
节点文献
二级参考文献
0
参考文献
0
共引文献
0
同被引文献
0
引证文献
0
二级引证文献
0
1
蒙世奎.
从不动点问题到隐函数定理的推广[J]
.高等数学研究,2004,7(4):20-22.
被引量:1
2
朱平.
竖线型结点组上的插值及向高维情形的推广[J]
.数学杂志,1998,18(4):393-399.
被引量:1
3
毛一波.
N维波发夫微分方程[J]
.重庆文理学院学报(自然科学版),2009,28(5):8-11.
4
冯芙叶,郑宏兴.
高维BBM方程的初值问题[J]
.宁夏大学学报(自然科学版),1999,20(4):295-298.
5
陆善镇,夏霞.
低于临界阶Bochner-Riesz算子交换子的有界性[J]
.中国科学(A辑),2007,37(4):395-406.
晋中学院学报
2005年 第3期
职称评审材料打包下载
相关作者
内容加载中请稍等...
相关机构
内容加载中请稍等...
相关主题
内容加载中请稍等...
浏览历史
内容加载中请稍等...
;
用户登录
登录
IP登录
使用帮助
返回顶部