期刊文献+

卫星云图样本集的FCM优化调整与云类判别

The FCM Optimized Adjustment and Cloud Classification Based on Satellite Images Samples Sets
下载PDF
导出
摘要 基于云类样本的红外-可见光二维灰度空间投影,采用模糊聚类方法调整优化云类样本特征区域,消除采样误差。针对常规模糊C均值聚类(FCM)方法在处理上述问题时表现出的局限性,提出用样本特征均值替代FCM中随机初始中心的改进办法,既避免了常规FCM方法对初始中心敏感的缺陷,又可纠正其聚类结果对云类样本特征结构的歪曲。改进后的聚类结果既消除了采样误差,又保持了云类样本的基本特征属性,基于该判据的分类结果可较为准确地分辨出陆地、水体、低云、中云、卷云和积雨云,分割判别效果符合客观实际。 Based on the projection in 2-dimension characteristic space of cloud samples, a fuzzy clustering method was presented to optimize and adjust the characteristic region of cloud samples and remove their sampling error. Aiming at the shortcoming of general FCM, a improved method of taking the characteristic value of samples to replace the random initial center of FCM was introduced. Using this method can both avoid the shortcoming of general FCM′sensitivity on initial center and can correct the characteristic structure distortion of cloud samples produced by general FCM clustering. The sampling error was removed and cloud′s basic property was kept in the improved clustering results. Accordingly, the land, water,low-layer cloud,middle-layer cloud, cirrus and cumulonimbus can be clearly classified, and the cloud classification results accorded with the actual weather.
出处 《防灾减灾工程学报》 CSCD 2005年第2期162-167,共6页 Journal of Disaster Prevention and Mitigation Engineering
基金 中国博士后科学基金资助项目(2004036012) 江苏省博士后科研资助计划(2004087) 国家自然科学基金资助项目(40375019)
关键词 模糊C均值聚类 云类分割识别 fuzzy c-means clustering cloud segment and classification
  • 相关文献

参考文献5

  • 1Koffler,R,A.G. Decotiis, P.K.Rao.A procedure for estimating cloud amount and height from satellite infrared radiation data[J]. Mon.Wea.Rev, 1973(101):240-243
  • 2Desbois,M.,G.Seze,G.Szejwach.Automatic classi-fication of clouds on METEOSAT imagery application to high-level clouds[J]. J.Appl.Meteor,1982(21):401-402
  • 3Welch,R.M.,M.S.Navar,S.K.Sengupta.The effect off resolution upon texture-based cloud field classification[J].J.Geophys.Res,1989(94):14767-14781
  • 4师春香,瞿建华.用神经网络方法对NOAA-AVHRR资料进行云客观分类[J].气象学报,2002,60(2):250-255. 被引量:38
  • 5吴咏明,张韧,蒋国荣,孙照渤,牛生杰.多光谱卫星图像的一种模糊聚类方法[J].热带气象学报,2004,20(6):689-696. 被引量:18

二级参考文献10

  • 1Michel Desbois, Genevieve Seze, Gerard Szejwach.Automatic classification of clouds on METEOSAT imagery: Application to high-level clouds. J Appl Meteor,1992,21: 401~412
  • 2Toassini C T.Objective Analysis of Cloud Fields. In: Proceedings of the 2nd Course on Satellite Meteorology of the Mediterraneann 1980. 73~78
  • 3Atkinson P M,Tatnall A R L.Introduction: Neural networks in remote sensing. Int J Remote Sensing, 1997,18(4): 699~710
  • 4Foody G M,Arora M K. Remote sensing image analysis using a neural network and knowledge-based processing. Int J Remote Sens, 1997,18(4): 811~828
  • 5Peak J E, Tag P M. Segmentation of satellite imagery using hierarchical thresholding and neural networks. J Appl Meteor,1994, 33: 605~616
  • 6KOFFLER, DECOTIIS R A G, RAO P K. A procedure for estimating cloud amount and height from satellite infrared radiation data[J]. Mon Wea Rev, 1973,101: 240-243.
  • 7DESBOIS M, SEZE G, SZEJWACH G. Automatic classification of clouds on METEOSAT imagery application to highlevel clouds[J].JAppl Meteor, 1982, 21: 401-402.
  • 8WELCH R M, NAVAR M S, SENGUPTA S K.The effect off resolution upon texture-based cloud field classification[J].J Geophys Res, 1989, 94: 14767-14781.
  • 9BEZDEK J C.A convergence theorem for the fuzzy ISODATA clustering algorithms[J].IEEE Tran,1980,PAMI-2:1-7.
  • 10陈子通.卫星图像像元云分析的方案研究和初步试验[J].热带气象学报,2003,19(2):177-183. 被引量:4

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部