期刊文献+

基于正则化RBF神经网络的软测量技术及其在质量预测中的应用(英文) 被引量:5

Regularized RBF Network-Based Inferential Sensor and Its Application in Product Quality Prediction
下载PDF
导出
摘要 神经网络对噪声污染数据的过拟合是模型设计中主要考虑的问题。将Tiknonov正则化方法用于RBF神经元网络的设计,在网络学习中将正交最小二乘与前向选择相结合进行网络参数的估计,通过k均值聚类算法获得网络中心,采用L-曲线方法进行正则参数估计,并将该正则化RBF网络用于气体分馏装置产品质量的预测。仿真结果表明,该模型简单易行,并具有较快的计算速度和较好的泛化能力。 The risk of overfitting on noisy data is of major concern in neural network design. Regularization provides a stable solution to function approximation with a tradeoff between accuracy and smoothness of the solutions, k-means cluster algorithm is applied to determine the network centers at first and an approach based on L-curve is then proposed to estimate regularization parameter. These estimations are conbined with forward selection to update network parameters in training. Simulation results show that RBFN with a suitable regularization parameter can get a good generalization.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第7期1609-1612,1678,共5页 Journal of System Simulation
基金 国家"十五"863重大项目基金资助课题(2002AA412010)
关键词 正则化 RBF网络 软测量 泛化 regularization radial basis function network inferential sensor generalization
  • 相关文献

参考文献30

  • 1Burger M,Neubauer A.Error bounds for approximation with neural networks [J].Journal of Approximate Theory,2001,112(2):235-250.
  • 2Xin Li.On simultaneous approximations by radial basis function neural networks [J].Applied Mathematics and Computation,1998,95(1):75-89.
  • 3Krzyzak A,Linder T,Lugosi C.Nonparametric estimation and classification using radial basis function nets and empirical risk minimization [J].IEEE Trans.on Neural Networks,1996,7(2):475-487.
  • 4Xudong Wang,Rongfu Luo,Huihe Shao.Designing a Soft Sensor for Distillation Column with the Fuzzy Distributed Radial Basis Function Neural Network.Proceeding of the 35th conference of decision and control,1996,12:1714-1719.
  • 5Kuo R J,Cohen P H.Multi-sensor integration for on-line tool wear estimation through radial basis function networks and fuzzy neural network [J].Neural Network,1999,12(2):355-370.
  • 6Wei Zhong,Jingshou Yu.Nonlinear Soft Sensing Modeling by Combined Multiple RBFN-based Models [J].Neural Networks,1999,5(10-16):3487-3489.
  • 7Burger M,Engl H W.Training neural networks with noisy data as an ill-posed problem [J].Adv.in Composite Mathematics,2000,13:335-354.
  • 8Hansen L K,Rasmussen C E.Pruning from adaptive regularization [J].Neural compu.,1994,6(6):1222-1232.
  • 9Girosi F,Jones M,Poggio T.Regularization theory and neural network architecture [J].Neural compu.,1995,7(2):219-269.
  • 10Lizhong Wu,Moody J.A smooth regularizer for feedforward and recurrent neural networks [J].Neural compu.,1996,8(3):461-491.

同被引文献25

  • 1万亚民,王孙安,杜海峰.液压并联机器人的动态神经网络控制研究[J].西安交通大学学报,2004,38(9):955-958. 被引量:15
  • 2邱书波,王化祥,刘雪真.RBF神经网络在卡伯值软测量中的应用研究[J].电子测量与仪器学报,2005,19(1):30-34. 被引量:7
  • 3王永祥,黄筱调.基于神经网络移动机器人PID控制[J].控制工程,2005,12(5):458-460. 被引量:5
  • 4S. Chert, S, A. Billings, C, F, N. Cowan, el. Practical identification of NARMAX model using radial basis function[J].Int. J. Control, 1990,52(1) : 327 - 1350.
  • 5张小军,冯宏伟.基于径向基函数神经网络的车型识别技术[J].西北大学学报(自然科学网络版),2006,4(2):21—24.
  • 6Karayiannis N B.Gradient descent learning of radial basis neural networks[J].IEEE Int Conf Neural Networks,1997,3(9):1815-1820.
  • 7He X D,Lapedes A.Successire approximation radial basis function networks for nonlinear modeling and prediction[J].Int J Control,1993,2(25):1997-2000.
  • 8Chen S,Billings S A,Cowan C F N,et al.Non-linear systems identification using radial basis functions[J].Int J Syst Sci,1990,21(12):2513-2539.
  • 9Chen S,Billings S A.Neural networks for nonlinear dynamic system modeling and identification[J].Int J Control,1992,56(2):319-346.
  • 10Chen T,Chen H.Approximation capability to functions of several variables,nonlinear functionals,and operators by radial basis function neural networks[J].IEEE Trans Neural Networks,1995,6(4):904-910.

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部