期刊文献+

柔性机构非线性运动的神经网络辨识模型

Identification Model of Flexible Mechanism Nonlinear Motion Based On RBF Neural Network
下载PDF
导出
摘要 研究目的是建立柔性机构非线性运动辨识模型.柔性机构的运动形态为高度非线性,利用径向基函数(RBF)神经网络,将机构驱动力矩和机构非线性运动参数分别作为RBF神经网络的输入和输出,利用达到训练精度要求的RBF神经网络进行柔性机构的非线性运动参数的辨识.计算速度快,精度高,为复杂系统的辨识提供了一种理想的建模方法. The purpose of this study is to set up identification model of flexible mechanism motion. The motive character of flexible mechanism is nonlinear. Radial Basis Function(RBF) neural network is constructed to identify the motive parameter of flexible mechanism. The driving moment and nonlinear motive parameter are considered as the inputs and outputs (samples) of RBF. Nonlinear motive parameters can be identified by trained RBF. The simulation experiments prove it is a high speed and high fidelity method. This method provides a way of model identification for complex system.
出处 《嘉应学院学报》 2005年第3期60-62,共3页 Journal of Jiaying University
关键词 径向基函数 机构 非线性 模型辨识 radial basis function mechanism nonlinear model identification
  • 相关文献

参考文献6

  • 1Lefik M,Schrefler B.A.Artificial nerual network for parameter identifications for an elasto-plastic model of superconducting cable under cyclic loading[J]. Computers and Structures.2002, (80): 1699~ 1713.
  • 2Efe M. O, Kaynak O.A comparative study of neural network structures in identification of nonlinear systems[J ]. Mechatronics, 1999,(9) :287~300.
  • 3Angerer B.T, Hintz C, Schroder D.Online identification of a nonlinear mechatronic system[J] .Control Engineering Practice.2004,(12): 1465~ 1478.
  • 4Shabana A A.Flexible Multibody Dynamics: Review of Past and Recent Developments[J] .Multibody System Dynamics. 1997,(1): 189~222.
  • 5田江.机构动态可靠性分析与仿真[D].北京:北京航空航天大学硕士学位论文,2003.
  • 6于霖冲 白广忱.柔性机构运动可靠性分析理论、方法与仿真[J].动力学与控制学报,2004,:15-18.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部